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ABSTRACT

Grogan. Timothy Alan. Ph.D., Purdue University, August 1983. SllAVI,
RECOGNITION AND DESCRIPTION: A (OMPAIATIVE STLI)Y. Major

- Professor: 0. Robert Mitchell.

An important problem in the extraction of information from images is 7

shape recognition. Several methods of analyzing binary images using global

shape methods based upon functional approximation have been reported in the

literature. However, there has been a lack of information comparing the

effectiveness of these methods in shape analysis.

Five methods of global shape analysis are compared on two basis. The

five methods compared are 1) Fourier descriptors of the boundary, 2) Walsh .

points of the boundary, 3) the cumulative angular deviant Fourier descriptors,

4) moments of the silhouette, and 5) moments of the boundary. First., the

different methods are introduced, their geometric properties presented, and the •"

formulae for some generic shapes are provided. Then the methods are

compared on the basis of the empirical facts derived from a set, of aircraft

shape recognition experiments. The shapes are different vieN~s of six aircraft.

The aircraft silhouettes are the two-dimensional projected images of three-

dimensional rigid bodies. The five methods are ranked according to their

performance from these experiments.

A new method for the recognition of partial shapes based on the Fourier-

Mellin transform is introduced. A shift and scale invariant, correlation of the

complete and partial shape's curvature functions is obtained by applying tlhe
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Mellin transform to the magnitude of the Fourier transform of the curvature

functions The logarithm of the shift in the correlation function corresponds to

the time scaling of the partial shape's curvature function. Then the shift in an

ordinary correlation of the complete shape's curvature and the scaled partial

shape's curvature is the time shift necessary to complete the alignment. Then

a pointwise comparison of the curvature functions can be made to determine

matching and non-matching contour segments. Some initial recognition

experiments for partial shapes are carried out and the results reported. i
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CHAPTER 1

INTRODUCTION

1.1 Shape: An Introduction

The function of many information processing systems is to either extract

information from a signal or to generate a signal from the realization of

algorithms which contain encoded information. This shape information can

then be used to describe a known shape or to recognize (detect or classify) an

unknown shape. This report compares several methods of representing shape

information. In particular, the shapes dealt with herein will be two-

dimensional regions in the plane that are simply connected. The representation

of a three-dimensional object (a simply connected region) will also be discussed

by way of its projection onto the plane.

The objective then is to characterize the shape by extracting measured

quantities. This might appear to be very straight forward, but shape is an

allusive quality to quantify. Shape can be contrasted with texture. Texture is

also difficult to define. Texture is the random or chaotic non-form of a signal

". and shape is the structure or form of the signal. These definitions however

have a fuzzy boundary between them.

- .- O



-0

1.2 Introduction to Shape Analysis Methods

0
In the study of the architecture of neurons in the brain and sensory

nerves, it has been suggested [PITT47] that humans perceive shape I%

performing comparisons to forms already stored in the brain. This comparison

is performed invariant of various transformations on the shape such as scaling

of size, translation, and motion. The structure of the neurons implement

operations that are invariant over these groups of transformations [i1OFF78].

Others have suggested that a shape is perceived when neural signals are

transformed until they reach a stable signal or the neurons reach a stable

condition (move to a strange attractor[THOM751). It is at that moment that

the shape is recognized. To actually implement this kind of algorithm on a

computing machine will require massive parallelism. Some preliminary

investigations into parallel implementation of shape algorithms have been

shown to have increased effectiveness [TUOM83].

Some of the early methods in shape analysis were based on extracting

gross parameters of the shape. For instance, topological invariant properties

such as the number of connected components, the number of holes, Euler

number, etc. were tabulated for a binary image [ROSE70]. Methods first used

in biology, for instance, the statistics of random cord intersections and

tangents, have their theoretical basis in integral geometry and the theory of

random sets [SANT76]. Also, aspect ratio, area, and perimeter have been used

[PA VL78]. Although robust in nature, these methods lack the ability to

characterize fine detail in and among shapes. The most recent methods have

attempted to provide this necessary discriminating ability.

Others investigators [FU82] have used formal languages with sets of rules

(syntax) to describe a structure of a signal. Syntactic methods represent local

-S C.._ '..02
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characteristics of a shape well. However, this approach begins having dilliully

in generating the necessary rules in an environment containing many shapes or

where one of many views of a three-dimensional shape are possible. Also, these

methods still rely on some other operation to first extract an ordered list of

shape primitives. These shape primitives or lists of primitives are the words

and sentences processed to determine if an allowed sentence (a possible shape)

has the proper syntax (i.e. has a desired shape.)

Some stochastic models have been developed for shape analysis [KASII81].

These methods seem to be especially useful for modeling broad classes of

shapes.

A very different approach is to instead measure how much of the unknown

signal is contained in each of several basis signals. A list of numbers is used to

characterize the shape of the signal(region). If shape recognition { detection or

classification) is desired, then instead of matching them directly, a

characterization is used that is convenient for the operations needed in lining

them up properly prior to the matching process. Then it can be determined if

they match by simply measuring the distance between the two

characterizations. The characterization is obtained by projecting the signals

onto the basis signals. This is done for each basis signal and the list of values

obtained constitutes the characterization of the shape. It is desirable if the

basis signals chosen are sufficiently different in order to extract the greatest

possible distinctive or independent shape quantities.

The theory of functional approximation and linear vector spaces

[KOLM75 provides exactly the formalism necessary to accomplish such a task.

The methods of shape analysis compared in this report differ mainly in what

sort of basis signal are used to characterize a shape. The measurement of

* ~c ±~ .r



quantities used for signal recognition (detection or classification) and

description is termed feature extraction. 0

1.3 Categories of Shape Analysis Methods

Shape analysis methods can be assigned to one of several categories. One

possible distinction can be made on the basis of whether local or global context

is used in extracting the shape information. With a local shape analysis

method only a subset of the elements in the characterization is affected by

information in a local neighborhood on the shape. However, with a global

method almost every element in the characterization is affected by information

in a local neighborhood.

Another partition can be made based on how much of the shape must be

available for the method to still perform adequately. Complete shape analysis -"

methods need the entire shape present to perform well. Partial shape methods

are designed to perform well even when some of the shape is either missing or

severely corrupted by noise. All but one of the methods discussed and

compared in this report are global methods. However, the performance of these

methods ksing partial shapes is also included. In Chapter 8, a new method for

partial shape recognition based on the Fourier-Mellin transform is

presented [GR OG83].

Shape methods can also be categorized on the basis of whether the interior

of the object or only the exterior boundary of the object is used in forming the -

characterization[PAVL78]. An external scalar shape method analyzes the

essentially one-dimensional function describing the boundary of the object.

Internal spatial analysis methods operate on the spatial distribution of the

object's interior elements.
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The main goal of this report is to compare five methods of coml)lete sh:)e-

analysis. Each method will be discussed in detail in a separate chapter. The

methods will be compared by first providing their defining relationships .,nd

listing many of the properties that pertain to shape recognition and description.

Also provided are generic shapes with their corresponding representations.

Lastly, empirical results from several large recognition experiments are

presented. The combined results from all five of the shape methods are then

discussed in a following chapter. In the chapter immediately following is a 0

discussion of the recognition system used and experiments carried out to

obtain the empirical recognition results.

S

I..
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CHAPTER 2

THE RECOGNITION SYSTEM

2.1 Recognition System Overview

Information processing systems are often designed to sense the

environment. Signals are collected, information contained in patterns of the

signal are extracted, and then an appropriate response is issued based on that

information. A general system for pattern recognition is depicted in Figure 2.1.

Let's briefly discuss the operations that take place as patterns are processed by

such a system.

Information about the environment is acquired by collecting energy. This

collection is accomplished by a device (collector) such as an antenna, a lens,

microphone, etc., and is ordinarily distributed in space and/or time. A

transducer converts the gathered energy into a form suitable for processing by

the recognition system. The collector and transducer together are often called

the sensor. The pattern is then presented to the the preprocessing functional

block. This block usually contains filters which either enhance or restore tlhe

signal. Some noise reduction is often attempted. The segmentation b)ock

separates or labels portions of the incoming signal. This block is often a simple

thresholding operation, but can be much more sophisticated such as a pixel

classifier or labeling of the signal components as a result of a feature clustering

algorithm. The basic idea is to discriminate among portions of the signal. The

segmentation functional block is often the inst dillicuIt block to design. This
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functional component is very much like the pattern recognizer to follow. A

tradeoff between the complexity of the segmentation and the remaining portion

of the pattern recognition system is often the main source of engineering

difficulties in implementing a system which can process signals from a real

world environment. Next is feature extraction. This is the functional

" component where the shape features are extracted when using a shape analysis

• : method. ('omparing the different shape methods mainly means changing this

functional component, with another employing a different shape method. This

component can also be the functional unit that provides the primitives needed

when using a syntactic method. Often following feature extraction is feature

reduction. This is employed to eliminate redundancy in the extracted features

or to simply prune down the number of features to a manageable size. The

methods often used are linear transformations including the princilpal

components transformation. The feature recognition functional element.

following can be simple template matching using an error norm followed bN a

ranking of the errors (K weighted nearest neighbors), a syntactic

analyzer(parser), or another decision function based on a probabilistic model.

The feature classifier oftea calls upon the knouiledge base for information suc.h

as templates, productions rules(grammars), statistical )arameters, or a mo(lel

with its associated parameters. :0

2.2 Recognition System Simulation

Now the simulation of the recognition system used to obtained the results

contained in this report will be discussed. Shapes for investigating the

recognition ,ysten's performance are simulated rather than using actwlua sensor

data in order to obtain more control over the experiments. Silhouettes of
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three-dimensional objects are obtained using a computer graphics program.

Models of military aircraft are formed by the union of cylindric and rhombic 0

prisms whose size and orientation have been specified. The faces of these

prisms are specified by the list of their vertices. The vertices are first, rotated

in order to obtain the silhouette of the object corresponding to viewing from a

particular aspect angle, (o O, o. (See Figure 2.2.) Then the object,

O(x,y,z), is parallel projected (P operator) onto the (x', yl) image plane. So,

corresponding to a particular aspect angle (0, Oy, 0.) is the image

I(x' y') PO( x,y,) z ) , 0, 0J. To simulate the projection operation

an array of individual parallel rays are "fired" at the model. Where a ray

intersects the object an image picture element (pixel) is set to one and where

there is no intersection the pixel is assigned a value of zero. So, in this case we

have a discrete image,

l I(i]A, jAV) P(OxYz ( QJ

where AV is the spacing between rays.

No attempt is made to perform any noise removal or any other

preprocessing. In other words, the preprocessing component is not simulated.

In one set of experiments, noise is added to the two level image in order to

sim1ulate a real world situation. The discrete noise image , nij, is added to the

discrete projected silhouette image to obtain Iii Iii + nij. This corrupted

inage i, then thresholded, i.e.

itii = 1, if ii

O0, if i< t

where t = threshold.

.1

.1
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Figure 2.2 Coordinate system for imaging three-dimensional object.
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silhouette image, only the boundary is stored. The boundary information is

stored in the form of an eight. direction chain code. The chain code is a list of

eight valued numbers that describe the direction to take to get from the

present position to the next as the object is traced counterclockwise. The

chain code is the ordered list, V" a0a11 aK i, wherea i = the direction code

specifying the direction to the next, image point along the contour, and K

length of the chain. The directions of the chain code are shown in Figure 2.3.

Each different shape method generates a feature vector f 0 ... f)T

which is a characterization of either the boundary function or the image itself. -"

Let f(x) be the function to be approximated, then f(x) = Efioi(x), and

fi f f(x)Oi(x) dx, where O(x) are the basis functions of the method and {Oi(x)}-

is the reciprocal basis for {oi(x)}. For later processing, the set {fi} is usually 0

truncated to a finite set of elements K, and reordered to form the feature

Vector fT" (fo ... fK The coefficients, fi, are used in forming the

characterization.

Further reduction of the feature vector is performed by applying a

principle components transformation followed by a truncation of the elements

in the feature vector. The principle components transformation is derived by

combining the feature vectors from all the libraries and calculating the sample

covariance matrix. That is

N'
i K- >.(fi- )(f 1-fl).

where
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V.. = (i,j)th element of the covariance matrix

fi -- >f = mean value of the ith feature.

N' n umber of feature vectors in the combined libraries.

fei = ith feature of the (Jth feature vector in the combined library.

E is a symmetric matrix. The principle components transformation then is the

matrix of eigenvectors of the covariance ordered by eigenvalue from the largest.

to the smallest, i.e. [pjT[.5[pj -A, where A is a diagonal matrix with the

eigenvalues along the diagonal and P is the matrix of eigenvectors. Letting P-

be the matrix P with its rows reordered by eigenvalue (largest to smallest) and

zero rows for the jth rows, j > K', then the reduced feature vector is f = P' f.

In general, the reduced feature vectors in the experiments consist of twelve (12)

elements.

Each individual airplane shape feature library is transformed into a

reduced feature vector library. These six libraries for the six different military

aircraft make up the knowledge base or templates used by the classifier.

Feature vectors from unknown shapes are then classified using a nearest

neighbor template matching. The unknown feature is compared to every

feature vector in the shape libraries. The unknown shape is then labeled as

belonging to the aircraft containing the library feature vector, ', having the

sma:1lest, distance to the unknown feature vector, f_ The distance is measured

as the sum of the square of the difference between each feature vector element

in the feature vector, i.e.
K'

dLj - RE~ui- f^ 'i]2
i=1

wtiatwhere f1L - denotes the ith element in the jth feature vector of the Lth library.
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2.3 Scheme of Experiments

Five basic classification experiments were designed to test the performance

of the shape analysis methods under varying conditions. Following is a

description of each experiment. Each of these experiments was carried out for

each for the five complete shape analysis methods. The results of these "

experiments are reported in each of the chapters describing that particulir

method. In chapter 8 is a comparison of the results of these experiments for

the differing shape methods. 0

The shapes used for data in the experiments are two-dimensional

projections of three-dimensional models of six different military aircraft. They

are the Mig, B57, Phantom, F104, F 105, and the Mirage. The shape libraries

are the sets of feature vectors derived from multiple views of each of these six

aircraft. Figures 2.4 to 2.9 show each of the six military aircraft shape libraries

consisting of 143 (13x11) views at an image resolution of 256x256 pixels. The

viewing angles (in degrees) used to generate the libraries are pairs of 0., and Oy

where

0.: 2.0 4.6 8.0 17.2 31.5 51.6 90.0

128.5 148.4 162.7 171.9 175.3 177.6

and

y:-90.0 -72.2 -53.9 -36.1 -17.8 0.0

17.8 36.1 53.9 72.2 90. 0

Fifty (50) random views not already contained in the libraries are

generated for each of the six aircraft (6x50=300 unknowns). These unknown

shapes are used as test patterns to be classified.
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Figure 2.5 B57 aircraft shape library of 143 (13x11) views, 256x256 image
resolution.
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Figure 2.6 Phantom aircraft shape library of 143 (13x11) views, 256x256
image resolution.
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Figure 2.9 Mirage aircraft shape library of 143 (13x 11) views, 256x256
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2.3.1 Image Resolution Experiment

0
This experiment was designed to test the shape methods as noise was

introduced as a result of varying image spatial resolution. The spacing of the

rays (Al) varies the image quality and thereby the quality of the projected

shape. Both libraries and the unknowns were generated with pixel arrays

resulting in images with 16x16 to 512x512 pixels per view. The same number

of elements in the feature vector was used throughout this experiment. Each

aircraft library consisted of 143 views corresponding to an 13x11 array of

aspect angles covering a hemisphere. Figures 2.10 to 2.15 show samples from

the unknown shape test sets at each of the six different image resolutions.

2.3.2 Feature Vector Experiment

This experiment was designed to provide insight into how compactly the

shape information was represented by the feature vector. With a fixed number

of views in each of the aircraft libraries(143) and with the libraries generated at

a fixed image resolution (256x256), the feature vector length was gradually

increased for both the libraries and the unknowns. The unknown image

resolution was also varied to provide additional information on how well the

feature vectors characterize the shape. The experiment was carried out using

the full feature set (in its varying lengths) and also when the feature extraction

is followed by the principle components feature reduction resulting in a reduced

length feature vector (12 real numbers.)
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Figure 2.10 Samples from unknown shape test sets, 16x16 image resolution.
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Figure 2.11 Samples from unknown shape test sets, 32x32 image resolution.
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Figure 2.12 Samples from unknown shape test sets, 64x64 image resolution.
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Figure 2.13 Samples from unknown shape test sets, 128x128 image
resolution. .

Ak
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0

Figure 2.14 Samples from unknown shape test sets, 256x256 image

resolution.
,. -,
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Figure 2.15 Samples from unknown shape test sets, 512x512 image
resolution.
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2.3.3 Library Projection Experiment

This experiment was designed to show variations in classification accuracy 0

as the number of views in the shape libraries was decreased. This tested the

different methods ability to properly classify a three-dimensional object from a

limited number of views. It also tested how well the method could discriminate

between very similar shapes that belong in different aircraft libraries. This

occurs when there are many views from each aircraft. These are opposing

effects however. So, to obtain more definitive results about these two effects O

would require an independent method of measuring the similarity among

shapes. This however was not available. Others have investigated methods of

reducing the library storage requirements [CHAR81, GLEN82]. Results from

these investigations imply that only a small number of views are necessary to

represent the shape adequately for the purposes of shape recognition. Figures

2.16 and 2.17 show the F104 libraries at an image resolution of 256x256 with 9

(3x3) and 49 (7x7) views per library, respectively. The viewing angles (in

degrees) used to generate the 9 view (3x3) libraries are pairs of 0., and 0y where

: 8.0 90.0 171.9

and

0y: -72.2 0.0 72.2

, The viewing angles (in degrees) used to generate the 49 view (7x7) libraries are
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pairs of o and 0y where

".s: 2.0 8.0 31.5 90.0 148.4 171.9

and

0y: -90.0 -53.9 -17.8 0.0 17.8 53.9 90.

2.3.4 Imaging Noise Experiment

This experiment was designed to test the performance of the shape

methods when the shapes have been perturbed by imaging noise. To simulate . "

this effect, 50 unknown views of each of the six aircraft were generated. The

images consisted of a background level, gb, of 96 and a level, go, of 160 when

the pixel was contained in the view of the three- dimensional aircraft two-

dimensional projection. Then zero mean, white, Gaussian noise, nij, was added
to the image, Iji. The image was then thresholded at 128. So, I = Iij + nij,

where E[rrijj  0, Efnii nkm] = b(i -k)(i -m) and

Prob[nij <n] = f e dx. The image was then thresholded at 128.
00 V r

So,

"i = 1, if i. >  128
0ij , if Ii < 128.

The contours of the resulting regions were traced and the chain code for the

region having the longest chain code was retained to represent that unknown.

These unknowns were then classified and the results tabulated for each

method The same operation was carried out on the six sets of 50 unknowns

for four different noise levels corresponding to signal-to-noise ratios of 3, 6, 10,
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*Figure 2.16 F104 library of 9 (3x3) views, 256x256 image resolution.
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and 20 dB. The signal-to-noise ratio here is defined as

SNR 20 log( A- ),

where A = - gb, and a = standard deviation of the white Gaussian noise

process. (A = 64 and a = 40.3, 32.08 , 20.02, and 6.4.) This same procedure

was repeated so that noisy unknown shapes were generated at image

resolutions of 64x64 and 128x128 image resolutions. Figures 2.18 to 2.27 depict

images of an F104 at each of the five signal-to-noise ratios and their .

corresponding contours. The libraries were at an image resolution of 256x256

and contained 143 views per library.

2.3.5 Partial Shape Experiment

This experiment was designed to test the performance of the shape

methods in classifying partial shapes. Partial shapes were generated by taking

the 50 unknowns for each aircraft and chopping from 10% to 50% of the

contour. The chopped out portion was replaced with a straight edge, a 90

turn, and another straight edge to close the contour. These unknowns were

processed to extract their shape feature vectors. Each feature vector was

reduced and classified. This experiment was performed with a constant feature

vector length and with the libraries at a fixed image -resolution (256x256) and

number of views in each library (143). The unknowns were all at. an image

resolution of 128x128. Figures 2.28 to 2.33 show examples of partial shapes at

each of 0%, 10%, 20%. 30%, 40% and 50% chopped.

" " • ". . - . •
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Figure 2.18 Noise free F104 silhouette, 128x 128 image resolution.
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Figure 2.19 Noise free F104 contour, 128x 128 image resolution.
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Figure 2.20 F1041 image with noise added (SNR =3 dB3), 128x 128 image
resolution.
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*Figure 2.21 Noisy F104 contour (SNR 3 dB), 128x128 image resolution.
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Figure 2.22 FINl image with noise added (SNR = dBi), 128x 128 image

resolution.
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Figure 2.23 Noisy F104 contour (SNR 6 dB), 128x 128 image resolution.
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0:

Figure 2.24 F 104 image with noise added (SNR 10 dB), 128x 128 image

resolution.
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Figure 2.25 Noisy F 104 contour (SNR 10 dB), 128x 128 image resolution.



Figure 2.26 F 104 image with noise added (SNR =20 dB), 128x 128 image

resolution.
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Figure 2.27 Noisy F 104 contour (SNR 20 dB), 128x 128 image resolution.
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Figure 2.28 Sample unknown shape contours chopped 0 %.
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* Figure 2.29 Sample unknown shape contours chopped 10 %
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Figure 2.30 Sample unknown shape contours chopped 20 %.
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Figure 2.33 Sample unknown shape contours chopped 50 %
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CHAPTER 3

FOURIER DESCRIPTORS OF THE BOUNDARY

3.1 Introduction

The first method to be discussed is a based on the well known method of

Fourier series analysis for functional approximation. Having been provided

with the silhouette of an object, the contour or boundary completely specifies

the two-dimensional shape. The contour can be parameterized as a function of

time by tracing around the boundary in counterclockwise direction. (See

Figure 3.1.) As the tracing continues the function begins to repeat. Since this

function is periodic, it can be expanded into a Fourier series. Each basis

function of the complex exponential Fourier series is non-zero almost

everywhere over each period. So, this is a global method of shape analysis.

The boundary function, -y, maps the real number lineIR, into the complex

plane, C. The projection on the real axis is the x component and the

orthogonal projection on the imaginary axis is the y component.

'IR-eC

=t) (x(t),y(t)) C IRxIR

'y(t) = x(t) + iy(t) C C.

The velocity of the tracing is v(t) d "t) So, the speed of tracing isdt

equal to the magnitude of the velocity, i.e.

r
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rFigure 3.1 Boundary function in the complex plane.Z!
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v(t)j 2 -yAt) da-liI
dt dt

If we assume that the tracing takes place at a constant.speed (uniform tracing),

then

v = t) ri = dx(t)f + Idy(t) 112= constant.

dt dt jj

Since the speed is constant and the period of the trace is T, then T = v L,

where L is the total arc length once around the contour. By definition, the arc

length is

T

L = fI -(t) I dt < oo
0

".7'

Assuming -(t) is a continuous, bounded, periodic function with finite arc length

(i.e. rectifiable), "(t) can be expanded in the Fourier series

n2-n

where

T . 2rn

en= -- f Rte dt.T O  .
0

--:
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3.2 Properties

A great deal is known about the properties of the Fourier series. These

properties can be exploited to provide some insight into the manner in which

the Fourier series coefficients represent shape. Following is a list of many

properties of the Fourier coefficients [GRAN72,RICH74,PERS77. The

properties will be used later to facilitate the manipulation of the Fourier

coefficients for shape recognition. Several of the properties also apply to the

shape description problem.

1) Completeness: The Fourier basis functions e T form an orthogonal

basis, complete in C[a, b] (or L2[a, b].

2) Convergence: Since the contour function 'y is a bounded rectifiable Jordan

simply connected closed contour (SCC), the Fourier series converges.

3) Continuity. Since -1(t) is everywhere continuous (SCC) and its first is

continuous almost everywhere, the modulus of the coefficients are of order

1/n2 , i.e. f coI = o(1/n 2 ).

4) Translation: If an object is translated in the plane by Z0  xo + iy o, then

S"- -$(t) + Z0 which implies that

co - Co + Zo

c = cn, nO.

(See Figure 3.2.)
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Figure 3.2 Translation.
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Figure 3.3 Rotation.
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5) Rotation: Rotation of the shape through an angle a about the origin

implies that c' ., the coefficients of the rotated object have a constant 0

phase added. That is

Y M ItOe '0  c n =. ceiO, \In.

(See Figure 3.3.)

Proof:

x' zxcosa - ysina

x = X5a + y cosca

So,

I x' +iy' (x +iy )e

Hence,

T -i2ffn T 2r

=1 {fI e T d t -i(t) e"'e T dt

6) Dilation (scale): If the object 1 is dilated by a factor X, then

Y(t M -At) *C'~ n XCn \/n.

(See Figure 3.4.)
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jy0

Y = 2

Figure 3.4 Dilation (scale).

jy

Y- (0) =-(tO) tO 0

r*Figure 3.5 Starting point shift.
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7) Starting point shift: Shifting the starting point counterclockwise along the

contour, corresponds to beginning at the point in time, "to", on the

original trace. (See Figure 3.5.) So,

2rn

ST t

Proof:

T . 2rncl n f (t + tdt.e T"•t
T 0

Let u =t + to,

to+ T 2rrn • 2w n toC' -'-f ueT _1-T u  '-Toto T f A(u) e due .-

i 2,rn to.''
c - c e T

n n

8) N-fold Rotational Symmetry: If a shape exhibits N-fold rotational

symmetry, then rotating the object by an integral multiple of the angle

a - about its center, c0, and moving the starting point clockwise by
N

kT we have the same trace. (See Figure 3.6.) Hence,

27rkco 2k c_).e

N'

This implies that

P2.

r ) . : : . . - : : . : . . - . - .
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Figure 3.6 N-fold symmetry (N =8).

...y(t +-T/2) - j

Figure 3.7 Axial symmetry.
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cen 00 only if (n-1)modN =0, .

Co can be anything,

en =0, for all other n.

Pro of.

T .27nt
en f 4f te' T dt

T0

T .2k 1 j2r
en f c) e N+ COe T dt

T- kT
N2f N T2c.~

=e'N j f (U~)co) e N+ co) e Tdu
TkT

N

kT
i.27k n N . 2Mf .21rk

en e N T T 'YU) e T du e N, nO0
N

and

_.2iic 21rk

C: c 0 e N c-Coe' N o

So,

i2,rk (

eD = co n 0
en le



(1- eN~~ en 0, Vii, nsf), k =0, 1,...,N -1.

which implies that

en x 0, only if (n -1)mod N 0.

and

=n 0, otherwise, except co can be anything.

9) Axial Symmetry: For a shape which is symmetric about its center (Figure

3.7), co, then yt) - co ) I)-COJ Which implies that

Cn 0, only if ni is odd

en 0, otherwise, except

=O anything.

Proof.

T
2 _j2,,n tT _j2,rn

en f-y~) e T dt+ f-t t
T0 TT

2

Letting X t -
2
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T T
2 .21rn 2 ,,.2n +T

en yf t) e- Tdt + f-(\+ e T 2 dX
o 0 2

T
2 _j2-n X

+ -jfcoe T 2 dX
T0

2 .2rn

en f'yt)e Tdt (I - en 1 1 ), n A
T0

e= Co, II 0.

4

10) Bilateral Symmetryi: If -1 is symmetric about the real axis (see Figure 3.8),

then for some to E [0, TJ, I~t) I ~t + to) = y*(..t) implies that n are

purely real.

Proof.-

Since -yis continuous and symmetric about the real axis, then it must

cross the real ax is. Let to b e the shift necessary so that

10t = *...t = Iyt + to)-

T 0 2w T 02w

~ ~-f t)e dt = dt
T 0



*Figure 3.8 Bilateral symmetry.



62

0

11) Reflections: Let Y/ be an object which is the reflection of -y about the real

(x) axis (see Figure 3.9.) Then

Pro of.

T21rn T .2irnt
=? -~f YW e dt = f-y*(-t)e" T dt.

-T 27rn 0 .21rn

-ifY*(\) e dX f -~fy*(\) e TdX

T0 1T -

- y iy e dt = ify~t)e Tdt

T T

n n

12) Area: For a simply connected closed curve ',bounding the region, R,

Area f fdx dy.

Using Green's Theorem,
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jy

IIReflection

Figure 3.9 Reflection.
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Area 4-if xdy- 4-fydx
2 7 27

1 ~y dxIfjx A-y---dt
2 f dt dt

+00

Area 7rntc"I 2.
n= -00

Proof.-

x Reb) ~ ~ y ImtyJ 2
.,n i2irn i 2wrn t-2

x x-L-(Cne T + cn*e T )y 1 D(ce T e....*e T

i2r i2irn t 2rn t._ 2,rnt*dx = -n(n T.2 wn T , y -IE4Cne T + Cn*e T
dt T nce t T~* n

Area x dx -f-ydt

S21n .2irn t 2 var _ .2xrm,

=-f--(c~e' T + c eT)A c -T + c me T)d
2o n T m

-- fj-ince T  cne T t )Dme' T -cm *e T )dt
o n 2im

T 2 ( +-'+t i(n-m)t

=~~ T~f[ cn m ' + mcence T
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* i-(m-n)t i-(m+ n)t

+mc~ *Ce T + m cf*cm*e T dt

n m n l nm m0

* i~-( - n~m -i - n)t
rFncn n ..e e T nc

+ nzCr emd

ATe =mn~ -j -1m 1 *
n~~~ inene+cncn e Id

+00

2 nln n 2 nn n C-n~

700* * *

r,2 [nCnC-n - 211cncn + ncnc~
n1l

ncnen + 2nce-ne- D 0 C*

7100

r,2 [2ne-C-nc.*J
n1l

+00 +00

IT nc DcCf r, n Cnl

n= - n= - - .-
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13) Line shape: A line shape (see Figure 3.10) is one with no interior such that

after some time a (Oa !), the contour begins to exactly retrace 0
2 2

but going in the opposite direction. That is

't +(-) Ty(-t + T)
2 2

which implies that

And if the starting point is an endpoint of the line shape, a 0. In that

case

n n

*Note that a line shape can have only support at most 2-fold symmetry.

Also since c-n = n c then

Area = , ~n[C.12~ -cnI2 0.
n=1

Proof-

Given -y(t) =jT-a )

TT T

en~j f yt) e d+ f -At) e T dt
T T T

2 2 2

ToT -
2 2 _j2ffn 2 2,n

f 1 y t) e Tdt + f 7( T- r- t) e Tdt
T TT

Let X T-a-t,
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Figure 3.10 Line shape.

7= o starting point

A-J

Figure 3.11 Polygon parameter definitions for Fourier descriptors of the
boundary.
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T T
2 2 _27wn 2 2 .2wn), .2in

en f e-'t T dt + f e- -1T a ea T

2 2

Ta2 _ 2 Tnt 2 .2irno '02 -i "wn " 21t - 2

T f (t)je T + e e Tldt

2

To
wnra 2 2

- T 'A ,t)Cosr(t )dt.

2

So,

,-.' C-n  en c e - -

14) Error bound: An error bound for the truncated Fourier series has been

derived by Giardina [GIAR77J. If -y is written as y = , then given . .

">O there exists a K such that if n>K then
• I~~Xn(t) ::

II- 'nl I < £, where n =

where

K = T maxVT(i(t), VT(y(t) 1--

A." V0T(i(t)) and VoT(y(t)) are the total variation of i(t) and y(t) respectively.

The Fourier series of x(t) and y(t) are truncated to n terms to form x(t)

. - .A
0 -. * . "-



and yn(t). The norm is defined as

-" sup IX-Xnj sup I Y-YnI
I -In - max 0<t<T 'O<t<T ] "

3.3 Calculation

Since the images are discrete, connecting the contours of the pixels around

the boundary produces a polygon. The Fourier coefficients can be computed

directly from the increments in time (arc length) and position as the polygon is

traced. (See Figure 3.11.) This is called the direct Fourier transform (DFT).

The following derivation follows along the lines of [KUHL82, except here the

complex exponential series is used. Also, a much more simple expression for

the DC term is obtained.

Let the increment in position be the complex number A-1i, and the

increment in time will be At i = Ayj = /Axi2 + Ayi2. Since 'y is

continuous, its derivative, %y, exists almost everywhere. So, let

+00 i --- r-- t

n~=-oo

be the Fourier series for -y. But the series for ' can be differentiated term by

term so that

+00 2,r2n In t
F, I i- Cne

n=o T

So,

27rn-.T23 n4en-_i2--_# n , n;00.
T f 127m fl nO

Now,

...........
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T 21rn Kj .2rnt

ln4 f t)e T Atj f t e T dt
T 0 T P t,_.

2rn t _ 2wn t

P T' eT

Tp=1 AP27

We can then write

"i [ 2irn 2irn .

n T - p - e J, n00, .

4 7r 1nP=1Atp

where

t= At i , to =0,

K is the number of sides on the polygon, and T = tK = period. For the c0

term,

T K t
Co fy(t)dt Fj- f -t)dt

.T e 0 -" O=- t'n

- K- I t + dt

- [1/2 A1p (Atp + 2ttp- 1 ) + pAtp],

where p= - tp-i, '/p "p-1 + fl = ; yo = starting point.

Hence,

• - .-- - .-
"" ** ::p' S -- '* - - Sii *2 .- .2 .iI ,i -i " -' - - , i.'- -. . S . " :... . t
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SCO. c, = (1/2Ayp + 'yp-l)Atp.

For the discrete images, the contours are represented by the eight-

direction chain code. So, the A-1i and At i can be determined using a lookup

table indexed by the chain code.

a: 0 1 2 3 4 5 6 7
A-Y: I l+i i -l+i -1 -1-i -i l-i ---

At: 1 V1 I V2 1 v2 1 vf-

The computational complexity is of order N K, where N is the number of

coefficients calculated and K is the number of links in the chain coded contour.

Using the chain codes can be inefficient, however, when there are runs of

identical chain codes. By requiring additional storage for two vectors (one

complex and one real), the computation necessary for the coefficients can be

reduced. It is necessary to compute the vectors {At' j} and {A/ j) for

i 0,1, • •,K K' < K, where A-/ i is the sum of the Ayj for the ith run and

At' i is the sum of the Atj for the it h run.

An alternative to calculating a direct transform of the polygon is to use

the Fast Fourier Transform (FFT), whose computational complexity is of order

Nlog2N, N = 2m. The FFT can be used if the discrete (complex) values

representing the contour are resampled so that there are N- 2m discrete

values. If the resampling can be done efficiently and with minimal distortion of

the signal (shape), then the FFT can be used to compute N = 2 m coefficients

quickly.
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However, there is distortion introduced by the resampling and also by

assuming that the signal is now a periodic impulse train instead of a continuous 0

complex valued function. If the contour is resampled to N = 2 m>> K, then

the distortion is minimal, but now the sequence of data values is much longer

incurring a greater computational burden. The resampling operation also must

be included in determining the computational complexity of this approach.

Since the contours used in the experiments are about 200 to 2000 chain

code links and 32 complex Fourier coefficients are usually calculated, the

resampling followed by the FFT was used. The resampling method used linear

interpolation between the complex data values. If the sequence 'Ip above is the

input to the resampling, and -ji is the sequence resampled to N = 2 m > K

values, then th? nib coefficient using the FFT is

N-1 - 2-nCn = NEt3J~ e--n N a 0, 1, •••,N-1 .

j=0

and where

2w 21rn
N-! N-I i-r

L"= e j e N = CN-n
i=O j=O-'

So, the FFT gives the (-N/2 + 1)th to (N/ 2 )th coefficient.

As previously mentioned, this assumes that

t) = b -7 6(t- ' where-yi+Nk "

j=-oo

Also notice that the I syj 's are not necessarily equal. So, while the DFT gives

the exact results for a continuous uniformly traced polygon, the FFT

implementation is based on a sequence which is not uniform sampling along the

contour. Sometimes the sequence 'p ,s very much over sampled in order to
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cause -Ij to be approximately uniform sampling. But if a large amount of over

sampling is performed, then the computational advantage of the FFT is lost. 6

One advantage of the DFT method is that only the coefficients actually

desired need be calculated. On the other hand with the FFT method, you

obtain 2 1 coefficients whether or not that many are actually desired. "

3.4 Normalization

It is usually desirable to compare shapes independent of size, orientation,

and starting point. To compare two shape boundaries using their Fourier -..

descriptors, it is necessary to scale, rotate, and shift their shapes in order to

allow the "best" fit possible. This operation normalizes the Fourier descriptors

for the unknown shape to an optimum orientation. It has been shown

[PERS77] that the optimum scale, rotation angle, and relative starting point

shift can be obtained to minimize the mean-squared error as the criterion.

Given two shapes -y and - which have coefficients c. and c' ., respectively,

minimize the distance function

d, [- cn - s e'~n@ + ) c' n 2J,

where s, 0,, and a are the scale, relative starting point, and rotation,

respectively. In practice, only N coefficients are uised to represent the shape. In

that case, the sum is taken over the finite set of coefficients. So, it is necessary

to minimize the following:

I Cnsei(nO + ) ct 1 2

n= N/2, n 'O

Next the partial derivatives are taken with respect to s, €, and a and they are -A
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set to zero. Then letting cn* c1 = Pn e', the following three coupled equations

are obtained

-Zpcos(?P, + no + &)
n

n l cl*

n

ta'a.- >pnsin(. + no)L'.tan(a) =(2)

-pncos(On + no) (

.- n'a EnPnsin(tpn + no)"..tan(a) = -(3)

-npncos('n + nO)

Combining (2) and (3) into one equation in 0

f(0) = -PSin(On + no) , pncos(?n + no)

- pcos(Vn + nO),rnPnsin(¢On + nO)

The optimum value for 0 is obtained by finding the roots of f(o). Then the

corresponding values of s and a can be obtained from equations (1) and (2).

Since usually only the -N/ 2th to the N/ 2 th components are retained, the roots

of f(v) can be obtained. However, this is very expensive to compute, especially

when the unknown has to be compared to many templates.

Instead of finding the zeroes of the transcendental equations above, several

investigators [PROF82,RICH74] have used simple correlation methods to

determine a good starting point and rotation normalization. The correlation

between two contours is usually implemented by multiplying the Fourier

transforms, taking the inverse transform, and then finding the peak.

rStill another [GRAN72] has used algebraic combinations of the Fourier

b .1

| "-
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coefficients to obtain starting point and rotation invariance.

To reduce the computational burden to normalize the coefficients, many

others have suggested that one of several suboptimum methods be used.

Instead of normalizing the coefficients of the unknown differently for each

template, the coefficients are normalized to a "standard" orientation

independent of the template.

First the object is translated to the origin by setting c0 = 0. Because the

fundamental or c, has always been observed to be the largest (nie0), all the

coefficients are scaled by dividing by I el. Next, the shape is rotated and the

starting point shifted. Most of the variations among the suboptimal methods

described in the literature occur in how this rotation and starting point shift is

obtained.

The simplest method is to rotate and shift so that the transformed

coefficients clI and c'-1 have zero phase [CRIM82,KUHL82. So, the

normalized coefficients c n are as follows:

C - Cn ei(n" + acl 0,

I ell e nt  ' o -O

where

e = 11 e and c 1 1 I cll ei z ' -

This requires that to and a to be

to - and a =- +Lc.
2 2

This is equivalent to rotating and shifting the starting point so the the c, and

c-1 components describing a fundamental ellipse has its major axis along the
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x-ax is.

There are two problems with this approach. The magnitude of c- 1 may be

zero. So, the phase angle is indeterminate. Second, there are two possible

orientations which satisfy the zero phase condition. An additional 180

rotation and -T/2 starting point shift would also satisfy the zero phase

condition.

Alternatives to this approach can help to mitigate these difficulties

[WALL80a,WALL80b,MITC82a,MITC82b]. The following algorithm is used in

this report to normalize the shape coefficients:

1) Set col = 0.

2) Scale so that Ic' = 1.

3) Find the coefficient ck that is next largest (Ik-ij <5, k 00, 1.) If

jk- 1j >5, thenletk =2.

4) Rotate and shift the starting point so that Lcl =0 and Lck' =0, i.e.

= cn i(nto+a),

ecll

Lc1 - Lck (k Lc - LCk)where to = =
k- I k-i

• 22 .2wk2-t i~rkt

The object -At) = c, e T + cke has 1k - Il-fold symmetry. So,

2r
there are I k - I rotations and relative starting point shifts, multiples of -

that will satisfy the zero phase condition. So, rotate and shift the starting

point so that

. .. . . IR il'l"... ... ;" .. ...... . ll ... "Ii " ...... .' Il~l 
L : "

.. . P " 
M

. ..... ' .. . :.. . ": .... 1 ' T 
'
... .. I~lll"- TI
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S2rm .2rm

n= Cn' e k-1 k1, m =0,1,-" ,(I k-11 -2).

to maximize the following criterion:

ERe(Z.} I Re{n}(.
n

This criterion effectively chooses the normalization that orients the contour so

that the axis of one of the main lobes of the I k- lI-fold fundamental shape

c i eit + Ck eikt is along the positive x-axis and the starting point on the contour

corresponding to that lobe is the one farthest from the origin. In order to

reduce the number of rotations to perform and calculate the criterion only

k-11 <5 is allowed. If Ik-11 >5, then k--l as in the first

normalization method.

The correct recognition of a shape is very sensitive to this rotation and

starting point normalization. In order to improve the classification accuracy,

multiple sets of Fourier coefficients are used in classifying the shape. The

descriptor for the best normalization above is used. In addition, if one of the

multiple rotations has a value of its criterion that is within 95% of the best,

this normalization is also used. To reduce the possibilities that the wrong

coefficient is used in the normalization, the third largest coefficient is also used

if it's magnitude is within 95% of the second largest coefficient. Again, the

next best normalization based on this third largest coefficient is also used if the

criterion is 95% of the best normalization based on this new coefficient. So in

all there can be as many as four sets of coefficients for each unknown shape.

For the library features only the best normalization is used. One of the four

possible normalizations is likely to match the proper template even when some

noise is present.

-
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3.6 Generic Shapes

In order to recognize a generic shape (one of a class of shapes), it is useful

to know the analytic expression for the characterization. In this section are the

analytic formulae for several basic shapes. Each generic shape is represented

by a set of parameters and the formula for the Fourier coefficients. In order to

recognize a shape, these parameters are estimated. The exact coefficients can

be calculated. Then a comparison of the coefficients of the unknown and the

model estimate can be made in order to make a decision IMITC811.

Other properties of the shape such as bilateral and axial symmetry can

also be investigated. For instance, the next largest coefficient, I CkJ, after I cl

can be used to determine the fundamental shape of the object.

If I ck is the next largest, the shape has Ik - I -fold symmetry. Figure

3.12 displays a library of fundamental shapes indexed by the value of k and the

ratio of the modulus of the coefficients [MOEL82]. The contours in this figure

correspond to 1(t) = c, e it + ck e kt , i.e, inverting the Fourier descriptor having

the two components c, and ck. The frequency ratio is 1:k and the modulus

ratio is - . Figure 3.13 shows four rows of the fundamental shape library

displaying equal time interval sample points. The non-uniform sample spacing

which occurs when there are only a finite number of coefficients can be

observed.

If most of the energy is in the odd harmonic components, then the shape

has (almost) axial symmetry. The test

t X E ' 2cn > , I Cn12
n odd n even

where 0 < t < I can determine if the shape has (almost) axial symmetry.
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FREQUENCY RATIO
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Figure 3.12 Fundamental shape library !MOEL82I.
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Figure 3.13 Fundamental shape library showving sample points.
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The shape can be tested for (almost) bilateral symmetry (with respect to

the x-axis) by determining if the components are nearly all purely real after

normalization. If

t X F, IRe{ij 1 2 > E Ilm{ n)12,

n n

then the shape has (almost) bilateral symmetry.

Following is a collection of important generic shapes [LAWR72,YATE47]

with the corresponding Fourier descriptors.

1) Circle: The algebraic equation for a circle centered at the origin is

x2 + y2 = r2. The substitutions x = r cost and y = r sin t also satisfy the

equation. So,

-At) = r cos t + r sin t = r eit, t E [0, 27r]

describes a circle of radius r. It has only the component, cl = r.

Unknown shapes can be tested for their "circularity" by determining the

proportion of the energy in the c component relative to the sum of the

rest. If

t Xlc I > E Ic,1
n, n0O,1

then the shape is approximately circular.

2) Ellipse: The algebraic expression for an ellipse centered at the origin is

x2  2
+ = 1. Substituting x = a cost, and y = b sint satisfies the

a2  b2

equation as t --0 to, 2wf tracing out an ellipse. The ellipse has a major axis

of length "a" along the x-axis and a minor axis of length "b" (a > b.)

This gives

"qt,,
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-(t) = a cos t + i b sin t = 1/a + b)e t + I/Aa-b) e-it.

=a+b _a-b

So, ci = a+b and c- - . This is why it was stated earlier that2 2

normalizing on c, and c-1 ig the same as placing the fundamental ellipse

best fitting the shape in its standard position. However, this shape is not

uniformly traced since

v(t) = J dtj ' = a2 sin2t + b2 cos2t 1 constant

The elongation of a shape can be estimated by the ratio

I____ a-b
elongation = - c.I a+b

If the c is zero the object is nearly circular. If c is greater than 0 the object

is elongated. The value of ( will always be less than 1 for a simple closed

contour that does not cross (traced counterclockwise).

3) Rectangle: Shown in Figure 3.14 is a rectangle in standard position having

a length of a and a height of b. It's starting point is located on the

positive x-axis. The rectangle can be described by the list of {A-yi}, {Ati},

-to, and T obtained when tracing the rectangle counterclockwise.

{A-y} = { b/2, -a, -ib, a, ib/2 }

{At} = { b/2, a,b, a,b/2 } T 2(a+b), yo = a/2+i 0 .

This data is used to calculate the Fourier coefficients from the contour

using the DFT given the following formula

-Lh

.. " i iII ., ." ,, , ,- ,. , . . . .. . . . .... .
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ib/2 starting
point

/a/2 b

-ib/2 T

Figure 3.14 Rectangle.

jy

~ib

b 8 starting point

b 
--- W

F 1t-ib

Figure 3.15 Isosceles triangle.
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-2a + b)sir (COS + . n__
2n2  2 2 2

cn =0, (n-1)mod2 0

CO = 0,

where a Notice that the rectangle exhibits the properties of 2-

fold and bilateral symmetry. The coefficients can be normalized to
sinnr .ni.p,

sin- {cos + sin

2 2
n2 {cosffA + sin- -}

2 2

The nth component is a function of only n and the parameter p.

The cl and c-- coefficients can be used to estimate p, as

2 arctan(I el -11 J
r I ell, I - 1

A shape can be tested whether or not it is rectangular by computing

coefficients of a rectangle based on the the estimate 0. Then decide based on

the distance between the normalized unknown components and those for the

rectangular model estimate. If 1/2 < p the rectangle is in standard position.

If p > 1/2 then it is not and the roles of a and b should be reversed. The

report by Mitchell and others IMITC8II describes the use of the above generic

shape recognition procedures to classify shape in imagery to assist in aerial

photo reconnaissance. The above formula for the rectangle also includes the

special case of p = 1/2, corresponding to a square, when

. .. .-, , , . ,
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c= 2(a+b) si nrjo n~rp +si "
n ~2 2 2 2

en =O, (n -1)mod 4 /-0.

4) Isosceles triangle: Shown in Figure 3.15 is an isosceles triangle whose two

equal sides are of length a, and base is of length 2b. The triangle is in

standard position, and co = 0. The list of {A-yj), {At1 }, -yo, and T are

{At1} a, 2b, a}, T = 2(a +b), - 3  i+ io.
4

This gives the following formula for the coefficients:

_n a+b I{(a+ b)in[ rra]
a r2 n2 a +

+ vf(a + b)(a-7b) (I -cosi ~ 1)1, n ?'

o 0.

Notice that the triangle has bilateral symmetry. For the case where

2b = a, the isosceles triangle becomes an equilateral triangle with

= 3a__ (3i[2r
-n 3a 2 + 2vr~sin[iJ)

4irn 33

cn 0, (n - )mod3 so.

Observe that the triangle has 3-fold symmetry.

laH
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5) Line shape: Shown in Figure 3.16 is the simplest line shape having

I A-1) = -2, 2 )

{Atj {2, 2} -y I+ iO, T 4.

The coefficients are

e= trn n - 1)od2=O0

c = 0, otherwise.

The normalized coefficients are

n= I-,(n -1)mod2O

CD-= 0, otherwise.

The shape is in standard position an thv- starting point is on the right

endpoint (ak = 0.)

6) Thin cross: Figure 3.17 depicts a thin cross. The list of {A-1} and {Ati}

are

Notice that this is not a line shape. It does not retrace itself in the

opposite direction in one period. The coefficients for this shape are

e= 8~- { (IMl ( Cos I!M + sin-! !] + 2sin-1!1
4 4 2
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ly

starting point

-lx

Figure 3.16~ Simple line shape,

_________starting point

Figure 3.17 Thin cross.

f9. ''.
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3mco 3.' 3 mn
+[cos-- sin-J--},(n- 1)mod4 X 0

4 4

en = 0, otherwise.

The contour of a object can be reconstructed from its Fourier coefficients

by taking the inverse Fourier transform. Figure 3.18 show an F104 contour

reconstructed from finite sets of coefficients. Figure 3.19 shows the Fourier

descriptor magnitudes for the contour. The original F104 contour is shown in

Figure .1.2.

3.6 Experimental Results

The experiments in section 2.3 were carried out for the Fourier descriptors

of the boundary. The feature vector was formed by calculating and

normalizing the coefficients. After normalization, the 0 and c- components did

not carry any shape information and were dropped from the feature vector.

The feature vector was then formed by listing the real and imaginary parts of

the remaining components as

f - (Re{c-},Im{c-1 },Re{c 2},Im{c 2},

Re{c-2 }, Im(c 2), ..., Re{CN/2), Im{cN/2}) T

This is the full feature vector. The 32 coefficients, c- 16 to c15, were used for

most of the experiments. The feature vector was then reduced by retaining the

12 first elements of the feature vector after applying the principle components

transformation. Now the results of each basic experiment will be presented

and discussed.

', liH
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-2 C CA C3

cL8 - 7 C-15 - C1 5

Figure 3.18 F104 contours reconstructed from the Fourier descriptors of the
boundary.
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A4

... 4 .500 l

Harmonic number

Figure 3.19 Fourier descriptors of the boundary (magnitude) for F104
contour.
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The imaging resolution experiment was carried out. The classification

results are presented in Table 3.1. The median x and y angle error between

the correctly classified aircraft and the closest view in the library are shown in

Table 3.2. The classification accuracy increases as the resolution of the

unknown increases for a fixed library resolution until the resolution of the

unknown and the library are the same. Then it begins to decrease. It is

interesting that the accuracy decreases with increasing library resolution for a

fixed unknown resolution, if the unknown is of less resolution. So, in order to

obtain the best possible accuracy, the unknown and library resolution should

be as close as possible. If the library must be at a fixed resolution, then the

128x128 library has the highest average classification accuracy for these shapes.

This is contrary to the idea that the highest library resolution must be the

best. The median angle errors follow the same trend. The y angle errors are in

general smaller than those for the x angle errors. This is probably due to the

actual aircraft shapes being used.

The results for the feature vector experiment are provided in Table 3.3.

The upper portion of the table lists the results using the full feature vectors.

The lower portion contains results for when the principle components

transformation was used and the 12 features corresponding to the largest

eigenvalues are retained. As the number of features is increased, the

classification accuracy increases. From the sudden increase in classification

accuracy, and the sharp decrease in median angle error between using 4 and 12

features indicates that most of the necessary information for these shapes are

contained in the first 8 Fourier coefficients.

Table 3.4 contains the results of the imaging noise experiment. The

feature vector consisted of 32 Fourier coefficients reduced to 12 real numbers.
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Table 3.1 FDS image resolution experimental results: classification
accuracy (%).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 54.33 59.33 49.33 45.33 43.0 41.33
32 64.0 86.33 77.0 72.0 70.33 70.0
64 60.33 88.67 91.0 91.33 87.33 87.0

128 55.67 81.33 91.0 93.67 92.0 92.0
256 50.0 79.33 90.33 92.67 92.33 93.0
512 50.33 78.0 89.0 93.0 92.67 92.67
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Table 3.2 FDS image resolution experimental results: median angle error

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 11,7 12,8 10,8 10,9 12,9 10,8
32 10,7 7,5 8,5 7,6 7,6 7,5
64 10,7 7,5 7,4 6,4 7,4 7,4

128 11,7 7,5 7,4 4,4 4,4 4,4
256 11,7 7,5 7,4 4,4 4,4 4,4

512 114,8 7,5 7,5 6,4 6,4 4,4
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Table 3.3 FDS feature vector experimental results.

Number of Number of Classification Median Angle
Fourier reduced Accuracy Error
Coeffs. Features (%) AIAOY (0)

4 4 42.0 20,12
8 12 80.67 7,4

16 28 93.67 4,4
32 60 94.0 4,4
64 124 94.0 4,4
16 12 93.0 4,4
32 12 92.0 4,4
64 12 92.0 4,4

--- *-- , - • -; , ' .. ... " -v ,. . .. . --. . .. .. - , - "'l I [
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Table 3.4 FDS imaging noise experimental results.

Library Unknown SNR Classification Median Angle
Resolution Resolution (dB) Accuracy Error

(%) Ax,Aov ()
256 64 3 26.67 25,20

6 51.67 O,8
10 74.0 7,6
20 86.0 7,4
00 87.33 7,4

256 128 3 40.67 14,11
6 58.67 9,7
10 87.33 7,5
20 02.0 4,4

_ 00 02.0 4,4

Leib,
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The performance improves consistently with increasing signal-to-noise ratio.

Table 3.5 presents the results of performing the library sampling

experiment. This data indicates that even more views might be necessary to

obtain very high classification accuracy.

In Table 3.6 are the results for classifying partial shapes. The method

performs better than might be expected for a global method up until more

than 10% of the contour is chopped. Then the performance drops off quickly.

3.7 Conclusions

The Fourier descriptors of the boundary perform very well under varying

circumstances. If more sophisticated classification procedures with

interpolation were used then the results would even be better. The Fourier

series is well understood. This greatly facilitates their usefulness for shape

description and recognition.
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Table 3.5 FDS library sampling experimental results.

Library Library Unknown Classification Median Angle
Views Resolution Resolution Accuracy Error

M(%) 40,Aoy (0)

143 256 64 87.33 7,4
49 73.67 9,6
9 52.33 25,13

143 256 128 92.0 4,4
49 79.67 9,6
9 54.67 25,13

143 256 256 92.33 4,4
49 79.67 9,6
9 55.0 25,13

.4.

LL

..............................
.. , * * *- -.. *~ . ~ . v.=
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Table 3.6 FDS partial shape experimental results.

Percent Classification Median Angle
Contour Accuracy Error
Chopped M% AO1,A4v (0)

0 92.0 4,4
10 83.67 7,5
20 58.0 9,7
30 30.33 34,15
40 22.0 57,27
50 12.67 f 62,33 1
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CHAPTER 4

WALSH POINTS OF THE BOUNDARY

4.1 Introduction

The Walsh functions have often been used as the basis for functional

approximation because the piecewise constant form leads to efficient

computation [GIAR83I. Also, since the basis functions are non-zero over the

entire interval of definition, this is a complete global shape analysis method.

Instead of the transform coefficients, this method uses the basis functions to

formulate the computation of Walsh points for the shape feature set. The

Walsh points are a collection of points, xk + iYk, k = 0, 1,2,..., 2' - 1, that

have a property derived from the fact that the Walsh functions were used in

formulating their calculation. The projections x(t) and y(t) are approximated

to within a prespecified degree of accuracy by a piecewise constant function, a

truncated Walsh series.

The Walsh functions, Wi(t), are products of the Rademacher functions,

ri(t). The Walsh functions for a complete orthogonal basis set complete among

square integrable functions on the interval [0,1]. The Walsh functions are

defined as

W0(t) = 1.

Wn(t) = r,, + 1(t) rn, + I . r., + i(t),

where n >1 is expressed in binary as

U6
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1n -2 n + 2n2 + + 2n,

and the integers ni are ordered such that

nl < n2 < . <. np.

The Rademacher functions are

ro(t) = 1

r1(t ) = /+ 1, 0 /
t E 0, 12)

r,(t + 1) = r1(t)

rk+lt) = r(2kt), k = 0,1,2,

In the following only the x projection of the boundary calculation will be

discussed. The same results follow for the y projection.

The Walsh series for x(t) is

x(t) E ai Wi(t/T)
n-0

where

T
a, " fx(t) Wi(t/T) dt = T fx(T t) Wi(t) dt

0 0

T = total arc length along -At) = x(t) + iy(t) .

Each ai is made up of the area under the portions of x(t) added and subtracted

together. In approximating x(t), only a finite number of terms in the Walsh

series are retained - say the first 2m
. If the series is truncated to a finite
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number of terms, there is an approximation error. It would be expected that

as N = 2m increases, the closer x2 .(t) approximates x(t). This error will be

discussed later.

Let

2- 1
X2 .(t) - , Ok Wk(t/T).

k=0

Since the function x23(t) (or y2A(t)) describes a piecewise constant function,

there are 2m discrete points, xk + iYk, that are the sum of the heights of the
k k+1 )

Walsh functions over each interval, I--T, T), k = 0, 1, 2m-1,

which approximate the x (or y) projection of -(t) = x(t) + iy(t).

It was mentioned earlier that the Walsh functions allow for an efficient

computation of the function x2-(t) (or y2m(t).) The ith Walsh function can be

written as

2 2=Wi(t)z -k-O - YikXhL_ )k (t),

where

k k+1I

2m  2m

The matrix of -)ik, H "- =d [=/ikJ, is the Hadamard matrix with 2m rows and

columns.

The ith coefficient of the Walsh series is

1 20 - 1 1

ai-Tfx(Tt) Wi(t)dt =T E -,ikfX(Tt) X k k + dt
0 k=0 0 12"
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(k + 1)T

= 1~ik f x(t) dt
k0O kT 4

=i E Ifi A~k, 1
k =0

where

k +I k+-LT
2__ 2k

Axk =T f x(Tt) dt = f x(t) dt.
k kT

AAk is the area under x(t) over the bai itrvl[ TT yletn

xx A I

be the Area vector and

a0

Ia2m - I

be the sequeney vector, we can write

6xH X 1

The Truncated Walsh series is

X2.(t) = r a Wi(t/T)
i=0

4.
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2--; (2-I

k 1 i E -Yi -k k+ )(t/T )

k=O ik0 kj2~

- Ck k k k + (tIT),
k=0 2m , 2"

where

20-
Ck = l ik Ci" (2)

i=0

The constants ck can be found by first forming the vector Y2. as

CO(r2 CI
C2r- 1

and noticing that as in equation (1) that equation (2) can be written as

2. HT

where HT is the transpose of the Hadamard matrix, H.

Since H is symmetric H = HT and

-2- =H 2 x

But because the Walsh functions are orthogonal, it follows that H2  2m.

Hence,

r2. = 2m "x

So, the truncated Walsh series gives a piecewise constant function whose
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heights are proportional to the area under the projection on each basic interval,

i.e.

2a- 1
X2.(t) = 2 m E Ak. X kT (k + f)(t)•

k=0 1 - 2%

4.2 Truncation Error and (-Net

In the previous section the expansion for the truncated Walsh series was

derived. The error in the expansion between x(t) and x2'(t using the Lo norm

is

sup M=0 ~l x~t - x2 (t) - 2m+1

where M is the maximum slope in the x projection. This follows from the more

general result IGIAR78I, that if x(t) satisfies a Holder condition of order a,

0<a<l, with constant M, that is

I x~t + h)-x(t)l :5M Ihl 0 , M>0

for t and h real, then

I 1x(t) - x240t1lo 1 _< M20
( 2 -I) (20)m+1

In particular if a = I (which is the case for polygonal curves), we have

M11 XW) - X 240~l~ 110 5- 2m+1

An c-net (c>O) for an arbitrary bounded, closed curve - 3 10,11 -. IRxIR

is a collection of a finite number of points W a [0, 11 --* xR where

1*A
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L L
W U{(x , yI )l } = U{wi}i=I i=1

The union of the closed balls, i T l x- x , Iyj < :5 covers the set of

points (x, y) of -y. That is, every point of - must be within a distance ( from

some point in W.

For a discrete image of an object silhouette, x(t) (or y(t)) is the projection

of a Freeman encoded boundary. Hence x(t) is a piecewise linear function that

satisfies Lipchitz condition with M equal to the maximum absolute slope of the

linear elements. The important fact is that the Walsh points in the vector Y2.

form an c-net for the curve -y. Figure 4.1 is a sketch of an t-neighborhood. If

we take any point p on the curve -y and draw a closed ball ( a square with sides

of length 2t centered on p), then since W is an c-net for "' there must exist a

point wi E W. However, if W' is also an c-net for the curve -y, then there must

also be a point w' E W' in the same c-neighborhood. So, the farthest

Euclidean distance that w can be from wl is 2vic. This is key to a recognition

procedure, because the Walsh points for a shape will be located within this

degree of accuracy.

The curve -y can be approximated to a prescribed error f or it can be

approximated by a fixed number of points resulting in error bounded by c.

Given a prescribed error c, the. number of Walsh points will be 2m where

m = max(n, k)

where

n [log2( )-I] and k -10o2(L)
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w' EW'

Figure 4.1 Sketch of an e-neighborbood.
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M and k(t) L
xt)- x2.,(t) 2- 2 ad!y(t)-Y 2 :t) k

M and L are the Lipchitz constants for x and y respectively. Alternatively, the

number of Walsh points can be fixed at N = 2m and the accuracy is

determined by

c = max[x, £y1, where

_ M _ L
x 2 m+1 and y 2 m+

In the recognition experiments, a fixed number of Walsh points were used.

4.3 Normalization

In order to compare the Walsh points feature vector of an unknown to a

library prototype, normalization with respect to translation, scale, rotation, and

shift in starting point must be accomplished.

The traced contour from the image grid is stored using Freeman chain

code links. When the shape features are to be extracted, the chain code is

converted to a complex vector -=" + iy. The increments in the arc length

for the piecewise linear segments connecting the grid points are calculated.

The co, c, and c-1 Fourier coefficients of the boundary are calculated to

provide the global information necessary for translation, scale, and rotation.

The translation is -c 0 . The scale factor s = c1 . The rotation angle is

=- Lc1 +Lc. The complex vector (J is normalized to ",where

the ith component is
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-i -c 0 ) e"', and T' = T/s.
s

This normalization moves the center of the shape to the origin. It scales and

rotates the shape so that the major axis corresponding to the fundamental

ellipse is along the x-axis and has a length of 2. The starting point is moved

by finding the kth point, -Yk, which is closest to one of the two points where the

fundamental ellipse crosses the x-axis. An additional 180 ° rotation is applied

if necessary to place -/ k in the right half plane. So, the normalized Walsh

points form the vector

k

-1

- 1K-I shift2= =. k

or J. e 2 Then the Walsh points are calculated by computing the

Area vector and multiplying by 21. Figure 4.2 depicts an F104 contour.

Figures 4.3 to 4.6 show the Walsh points with their corresponding c-

neighborhoods after normalization. Figures 4.7 to 4.11 show their

corresponding x and y projections.

4.4 Experimental Results

The feature vector used in the experiments was formed by simply listing

the Fourier points real and imaginary parts in order, i.e.

f (xo, yo, x1,yl, , •. . , K I T

For most of the experiments the full feature vector consisted of 32 Walsh



109

Figure 4.2 Original F104 contour.
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Figure 4.3 Walsh points with corresponding i-neighborhood after
normalization, 2m =16 points.



Figure 4.4 Walsh points with corresponding c-neighborhood after

normalization, 2 ' 32 points.
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Figure 4.5 Walsh points with corresponding c-neighborhood after

normalization, 2m 64 points.



113

Figure 4.6 Walsh points with corresponding E-neighborhood after
normalization, 2m =128 points.

~-1
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X Projection Y Projection
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Figure 4.7 Original F104 contour projections (624 points).
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Figure 4.8 Normalized Walsh points projections (2n 16).
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Figure 4.10 Normalized Walsh points projections (2!' 043).
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points. In most cases the feature is transformed using principle components

and then truncated to 12 real numbers.

Table 4.1 and Table 4.2 list the results for the image resolution

experiment. The feature consisted of 32 Walsh points reduced to the 12 real

numbers. The best results are obtained when the prototype and unknown

image resolutions match.

Table 4.3 presents the results of the feature vector experiment. The

results shown in the top portion of the table are for the full feature vector. The

lower portion corresponds to when the feature was reduced to 12 real numbers.

The performance improves with increasing number of Walsh points.

Table 4.4 lists the results of the imaging noise experiment. The feature

set is the 12 reduced real numbers. The performance improves with increasing

signal-to-noise ratio.

Table 4.5 lists the results of the library sampling experiment. The

performance improves with increasing numbers of library views.

The partial shape experiment results are contained in Table 4.6. The

reduced vector was used here also. The method can obtain a correct

classification 3/4 of the time even with 10% of the contour chopped.

4.5 Conclusions

The Walsh points perform well. The speed at which the Walsh points can

be computed make them a good competitor. The major problem is with the

normalization. Normalization is cumbersome for the Walsh points. In fact,

normalization is actually carried out with use of the Fourier descriptors of the

boundary. The use of interpolation techniques would surely improve the

J



118

Table 4.1 WAL image resolution experimental results: classification
accuracy (%).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 45.0 44.67 40.0 38.33 37.33 35.33
32 52.33 73.33 71.33 62.67 58.67 57.0
64 49.0 72.33 83.0 80.0 75.67 72.0

128 46.67 67.67 82.0 86.33 83.33 82.67
256 44.33 66.0 81.33 85.67 85.33 83.67
512 44.0 64.33 79.0 84.67 83.33 85.0



Table 4.2 WAL image resolution experimental results: median angle error

Unknown Prototype Resolution
Resolution 18 32 64 128 256 512

16 13,7 17,8 20,8 17,8 25,11 25,12
32 10,7 8,5 10,5 0,8 0,7 9,7
64 12,7 7,6 7,5 7,5 7,4 7,5

128 11,7 7,8 7,5 4,4 6,4 6,4
256 9,7 8,5 7,5 5,5 6,4 6,4
512 9,8 9,6 7,5 6,4 7,4 6,4

-~. &A6LOIM
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Table 4.3 WAL feature vector experimental results.

Number of Number of Classification Median Angle
Walsh reduced Accuraey Error
Points Features (%) AO1 ,AOV (0)

16 32 88.0 6,4
32 64 00.67 6,4
64 128 91.67 6,4
32 12 83.0 6,4
64 12 83.33 6,4

128 12 84.0 6,4



121

Table 4.4 WAL imaging noise experimental results.

Library Unknown SNR Classification Median Angle
Resolution Resolution (dB) Accuracy Error

(%) AX ,0y(o)
256 64 3 28.0 25,17

6 43.33 14,9
10 61.67 9,6
20 71.33 7,5
00 75.67 7,4

256 128 3 39.0 21,12
6 52.0 12,8

10 72.0 7,5
20 83.33 6,4

_00 83.33 6,4
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Table 4.5 WAL library sampling experimental results.

Library Library Unknown Classification Median Angle
Views Resolution Resolution Accuracy Error

143 256 64 75.67 7,4
49 64.33 12,6
9 41.0 32,13

143 256 128 83.33 6,4
49 70.67 9,6
9 ______40.0 26,12

143 256 256 85.33 6,4
49 70.33 9,5
9 _____ _____ 41.67 32,13
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Table 4.6 WAL partial shape experimental results.

Percent Classification Median Angle
Contour Accuracy Error
Chopped (%) AxA (0)

0 83.33 6,4
10 76.0 7,5
20 56.33 12,7
30 30.0 27,12
40 21.33 63,27
50 17.0 91,33
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results. The Walsh points however do not provide the easy access to generic

shape property measurements, such as for symmetry.

-. ,rr-
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CHAPTER 5

CUMULATIVE ANGULAR DEVIANT

FOURIER DESCRIPTOR

6.1 Introduction

This shape analysis method also uses the Fourier expansion in order to

exploit its time shift properties. Instead of approximating the boundary

function, the approach here is to use a function derived from the angle function

[ZAHN72]. Physiological and psychological investigations of the human visual

system suggest that curvature is very important in classifying shape [ATTN661.

The boundary is traced clockwise as a function of arc length. At each

point the instantaneous direction of the velocity vector with respect to an

orthogonal coordinate system defines the angle function, 0(g), as a function of

arc length. Since this function repeats after one complete circuit, it is periodic

and can be expanded into a complex Fourier series. But first it would be

advantageous to normalize this function. The initial starting angle 0(0) = 60 is

first subtracted to define

00) '- 0 )- o ,PE[O,LI,

where L is the total arc length. The time scale is normalized to make a

function that has a period of 27. Also, if the contour is simple and closed, then

0(0) = 0 and O(L) = -2 7r. This linearly decreasing angle is subtracted to

obtain the cumulative angular deviant function Ot),
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= (Lt) + t , tE[O,2r]l.

2r4

The complex Fourier series then is

+00
(t)= d. et i

n=-oo

where

21r
dn f (t) e-'ntdt

0r

But since OP is purely real, then d. = d__*. So, it is only necessary to know d.

for n > 0. The series can therefore also be written as

m(t) = PO + Acos(nt + a.),
n=1

where

po = do

A 21dnI and an Ld.

5.2 Properties

The following is a list of properties of the Fourier series of the cumulative

angular deviant [ZAHN721 as they pertain to shape geometry.

I) OP is invariant under translation, rotation, and dilation (scale) of the

contour I.
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2) For all simple closed curves

0(21r) = 0(0)

3) Since it has been required that 00(0) = 0, then

=o -2 E Red.}
n=1

or

00

Po E Ancos(atn)
n~=I

4) Reconstruction: Given a contour described by O(Q) and starting point -1(0),

then

170) = 1(0) + fe(),
0

5) Any function O'(Q V(P) mod 2~r describes the same contour.

6) A curve is completely represented by -y(O), 60, L, and 4~)

7) Cloaure: The function -#Q) is a closed curve, it one of the following is true:

a) A, is a zero of the first order Bessel function function J1(x) and

An 0 for n >0.

b) An =O0for all n mod k A 0, where k >2.

8) Starting point: A clockwise shift in the starting point of Al implies that

d~~de 2'nAl

or
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An =A n

and

an- -i ~a A 27rAQ
L

9) N-fold symmetry: -KQ) has N-fold symmetry, if and only if

dn =0, fornmodN 40.

10) Axial symmetry: If the curve -1 has axial symmetry, then

dn = 0, for n odd.

(This is different than that given in [ZAHN72]).

11) Reflection: For -1 the reflection of -1,

d = -dn* anie0

do = -do - A0 8,

where A 0 is the change in angle at the starting point if -1 is polygonal

there ( i.e. has a jump in angle of size Abo.)

5.3 Calculation

If the curve is a polygon, as in the case for the chain coded boundaries, the

Fourier descriptors of the cumulative angular function can be calculated

directly. Assuming the polygon has K vertices, let Ati be the length of the side

from the .- 1)t h to the ilh vertex. The change in angular direction at the ilh

K
vertex is Ao i. The total arc length is then L = -Al i. Therefore,

1-1

9% . . . .. . .
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K k k+l
F) Aoi, for LA!<Q<.

and

= , for 0<_Q <Q .

With these definitions (see Figure 5.1), the Fourier coefficients are
IK

do = L E " k A~k
k=1

K .*2 nrnfk

dn = t AO'e' L , n $,
nI k=1

where

K

The parameters AQi and A~j can be obtained directly from the chain

codes, a1, where A{, = V2 or I and

A~i = f(ai - ai_1)

where

i, flil)) (-7 , ),(-6 -, (, 3v
4 2 2 2 2)

4 4 2 2 2 2 4

For a contour having a long chain code, this can be a lengthy calculation

of order N'K. This burden can be reduced by resampling AQ, and Aj to

K' < K. This will introduce distortion which is non-linear with respect to the

I r
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V

VO=V2

AQK / AQ3

1JOA0 2 'z

Figure 5.1 Polygon parameter definition for cumulative angular deviant
Fourier descriptors.
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contour.

Another alternative is to resample the (xi, yi) sequence to a power of two.

Compute the cumulative angular deviant function as

tiW tan-I Yi -Yi 1 tan-,l Y - + 2r1xi-xi-1 I- xi-xJ K#"

Then use the FFT, retaining the positive frequencies only. The resampling hT.rd

discrete approximation used to compute the angle function introduce

distortion. Also, the FFT is periodic, so there is aliasing if the resampling does

not effectively lowpass the contour sequence. Another source of distortion is

that now the samples are not necessarily uniformly distributed along the

contour.

In the experiments discussed later, the direct method of calculation was

employed.

6.4 Normalization

The cumulative angular deviant is already normalized for translation,

rotation, and dilation. This leaves only a starting point shift to normalize.

The original authors [ZAHN721 used algebraic combinations of the phases of

the coefficients to obtain starting point shift invariance. It is difficult however

to determine if this transformation has retained all the necessary shape

information.

The method used in this report normalizes the Fourier descriptors of the

cumulative angular deviant, dn, by employing the time shift property in a

manner similar to that used in the Fourier descriptors of the boundary function

normalization. The positive components having the first and second largest
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moduli are found, I dkl and I dk2I, respectively. The starting point is shifted

so that the angle of the klh component has zero phase, i.e.

- Ld,1

dn' = dne ki

For the unknowns, if the txI dkI 1 I dk2, where t = 0.05, then a second

feature vector is computed using the phase of dk2, i.e.

ind2

dn = dne k2

This was done to prevent noise from causing the wrong component to be

chosen for the normalization. In the recognition experiments, both feature

vectors are compared to all the library feature vectors. The unknown is labeled

according to the smallest distance for both of the feature vectors. Since

property 3) states that the do coefficient is redundant, it is dropped from the

feature vector.

5.5 Generic Shapes

Following are a few generic shapes with their Fourier descriptors of their

cumulative angular deviant.

1) Rectangle: For a rectangle traced clockwise with the starting point on the

upper right hand corner,

} T ir r
2, 2' 2, 2

{AQ} -- {b,a,b,a}, L = 2(a+b).

In that case the coefficients are

i4

'It



133

xnb ) i /2

dn I + (-I)a cos( 2a+b ) e2( b)eiw/2, n 90

or

1rrnb
d2, C nOS( -b-)e' a , d2n +1 = 0 , n = 1,.2,''

n a+ b

The normalized coefficients d. are

. , irnb , (n{n+l)an=-es CO b )-' e2 , - 0, n = 1,2,••
n a + b

In the special case of a square

d4 ='2n d4n+J 0  j 1,2,3 n =1,2,

2) Isosceles triangle: For an isosceles triangle traced clockwise

{A} = {cos-'( -b), 2 cos(-, cos ,(:-}
a a a

{MA) = {2b, a,a}, L =2(a+b)

The Fourier coefficients are

i rnbbdn~nr-' e' a+ b 7( - c os - ,( b ,) "COS(a 7mb ) +co_(,._~}.

In the special case where the triangle is equilateral

d3 n = I' d 0n+j j = 1,2y n 1,2,

.. .,,.. .. . .,__. :l.:
=

.. .. ,.• .. ,,, ,a ._' ,,, '- - oi, " 3n, _. ,
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3) Circle: A circle traced clockwise has an angle function 0( ) - Hence
L

OP =-0. - d = 0, Va.

The Fourier descriptor magnitudes of the cumulative angular deviant for

an F104 contour are shown in Figure 5.2. The contours reconstructed from

increasing numbers of coefficients are presented in Figure 5.3.

6.6 Experimental Results

The feature vector for the Fourier descriptors of the cumulative angular

deviant were formed by dropping the DC (d0) component and listing the real

and imaginary parts of the positive frequency components, i.e.

f = (Re{dn},Im{d1 }, . Red.-j,Imjdn-1}) T .

In most cases the full feature vector was formed from the first 32 Fourier

coefficients. Then the principle components transformation was used to reduce

the feature to 12 real numbers.

The image resolution experiment was performed using the feature vector

reduced using the principle components transformation to 12 real numbers.

The results are provided in Table 5.1 and Table 5.2. The best results are

obtained when the prototype image resolution matches that of the unknown.

In Table 5.3 are the results obtained for the feature vector experiment. It

is not clear why the classification accuracy should decrease with an increasing

number of features.

Table 5.4 provides the results for the imaging noise experiment. In

general, the performance increases with increasing signal-to-noise ratio. There

is a large increase in classification accuracy between the 10 and 20 dB signal-

Nkt
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0 a 1 9 11 1,3 I'S

Harmonic number

Figure 5.2 Cumulative angular deviant Fourier descriptors (magnitude) for
F104 contour.
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aO a3 ao- a7

do - a 15 do - d31 P
Figure 5.3 F104 contours reconstructed from the cumulative angular

deviant Fourier descriptors.
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Table 5.1 CAD image resolution experimental results: classification
accuracy (%).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 34.67 34.0 26.33 25.0 25.33 31.0
32 31.0 30.33 40.33 39.67 38.0 37.0
64 39.0 43.0 47.67 44.67 45.33 44.33

128 36.67 47.67 52.33 52.0 52.67 51.67
256 34.67 43.67 50.67 52.67 53.33 54.67
512 33.0 41.0 49.67 52.0 52.0 54.33
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Table 5.2 CAD image resolution experimental results: median angle error

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 22,15 30,17 54,20 75,21 78,21 67,21
32 32,15 18,9 22,12 43,13 41,12 36,12
64 41,15 25,12 23,9 21,9 32,9 32,12

128 36,15 24,10 17,9 16,9 16,9 18,10
256 34,17 34,10 17,9 17,9 17,9 20,9
512 38,20 32,10 18,10 16,9 20,9 17,9

w1~~ -
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Table 5.3 CAD feature vector experimental results.

Number of Number of Classification Median Angle
Fourier reduced Accuracy Error
Coeffs. Features M% A4J"A* (0

4 6 48.67 22,13
8 14 58.67 20,10

16 30 56.67 17,9
32 62 53.67 17,8
64 126 49.67 21,9
16 12 53.0 16,9L
32 12 52.67 16,9
64 12 53.33 16,9
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Table 5.4 CAD imaging noise experimental results.

Library Unknown SNR Classification Median Angle

Resolution Resolution (dB) Accuracy Error
M(%) A ( )

256 64 3 15.67 92,54
6 19.0 54,26

10 23.33 54,26
20 46.67 32,14
00 45.33 32,9

256 128 3 17.0 91,52
6 20.33 85,52

10 22.33 63,35
20 50.33 30,9
o 52.67 16,9
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to-noise ratios. There seems to be a threshold effect occurring.

Table 5.5 provides the results of the library sampling experiment.

Classification accuracy does not increase dramatically with an increasing

number of views as would be expected. -.

The partial shape experiment was also performed. The results are listed in

Table 5.6. The performance quickly degrades as the contour is chopped.

5.7 Conclusions

The performance of the cumulative angular deviant Fourier descriptors is

only moderate to even poor. Also the need to take the derivative and calculate

the inverse tangent even before a Fourier transform is taken increases the

computation complexity. It is also more difficult to obtain insight into the

geometric properties of a shape because of the nonlinearity of the

transformation. It is difficult to understand how the high classification

accuracy results reported in the literature were obtained with this method in

view of the facts as presented here.
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Table 5.5 CAD library sampling experimental results.

L ibrary Library Unknown Classification Median Angle
Views Resolution Resolution Accuracy Error

_______M _______Y (%0)____

143 256 64 45.33 32,9
49 42.0 27,9
9 31.67 50,18

143 256 128 52.67 16,0
49 50.33 21,9

9 ______34.33 56,18

143 256 256 53.33 17,9
49 49.67 22,9

9 ______ 34.67 47,17
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Table 5.6 CAD partial shape experimental results.

Percent Classification Median Angle
Contour Accuracy Error
Chopped M% AO44IAO (0)

0 52.67 16,9
10 34.67 28,16
20 26.0 30,11
30 26.0 32,23
40 25.33 68,27
50 19.0 §0,40
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CHAPTER 6

MOMENTS OF THE SILHOUETTE

6.1 Introduction

An internal spatial shape analysis method will now be introduced

[HU62,TEAG80,DUDA77]. Let the image be a two dimensional function,

f(x,y). If f(x,y) is piecewise continuous and has bounded support, then the

sequence, {Mpq}, of moments describes f(x,y), where

00 00

Mpq = f f xPy q f(x, y) dx dy .
-00-00

These moments are often called the conventional or raw moments. The

moment Mpq is said to be of order n = p + q. This characterization is the

projection of f(x, y) on the basis set, the monomials, xPy q. The monomials are

complete basis set for the functions of the class described above. The set

*however is not orthogonal.

The shapes dealt with here are silhouette. So, let the set of points

contained in the object be 0. Then

1y , (x,y)EO

-0, (x,y)0O

Since the monomials are non-zero almost everywhere, this is a global shape

analysis method.
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6.2 Properties

Listed below are a number of properties of the moment set for the O

function f(x, y).

1) Translation: Let M pq be the moment of order n = p + q for f(x, y).

Translating f(x, y) by the shift (a, b), then

ft (x, y) = f(x -a, y -b) -' pq = MI pq =j (P) (P) aP-rbq-s Mrs.
r0 s

When (a, b) is chosen such that po = 0, the set (Jp.) is called the central

moments.

Proof:

00 00

my f f Xpyqf(X -a, y -b) dx dy
p 00-00

00 00

- f f (x + a)P (y + b)q f(X'y)dx dy
00-00

W00

-f f t P pr qb-y ~,y xd

2) Dilation (scale) : If the extent of the object, 0, IS increased by X, then

f'(X,Y) = f(x/X,y/X\) - M' pq = P~ 2 pq.

Proof-

00 00

M1 pq f f JXpyqf(X/X, y/X) dx dy
0000
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00 00

= f f (x)P(Xy)qf(x,y)Xdx Xdy.
-00-00

3) Rotation: If an object is rotated through an angle 0 about the origin, then

r' (x, y) = f(x cosO- y sinO, x sinO + y cosO)

M1pq = t t(p)(q (. 1 )q-S(CoSO)p-,t*s (5 jflo)q+r-s M p+q-rs,r+s
r=O s= r

Proof:

00 00
M'pq = f f x py q f(x cosO-ysinO, x sinO + y cosO) dx dy

-00-00

00 00

= f f (x cosO + y sinO)P (y cosO- x sinO)p f(x, y) dx dy
-CO-00

00O000

= f f t (P) (X cosO) p- (y sino) r

-00-00r=

t (q)(ycosO)'(x sino)q,(-I)q-s f(x, y) dx dy .
s

4) Reflection: If an object is reflected about the y-axis, then

f (x,y) = f(-x,y) - M' pq= (-I)P Mpq

Similarly, for a reflection about the x-axis,

f (x,y) - f(x,-y) M'p = (-)q Mpqpq 'q
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Proof.-

00 00

=ip f f Xpyq f(-x,y) dxdy
- 00-00

=-00-00

f f (-x)Pyf(x,y)dxdy
-0000

00-00

=(-1)p f f Xpyqf(x,y) dx dy
-0000

5) Symmetry: If an object is symmetric about the x-ax is, then

f(x,y) = f(-x,y) - Mp = 0, for p odd.

Similarly, if the object is symmetric about the y-axis

fAx'y) =fAx,-y) -Mpq =0, for qodd.

Proof.

00 00

Mpq = f f Xpyqf(-X,y)dXdy
-00-00

= (-1)p Mpq

Mpq[1 - (-i)PJ =0
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6) Combined moments: If there are two objects 0 and P such that

0 U P = 0, then the moments of the union of the two sets is just the sum

of the corresponding moments, i.e.

MpqOUP = M pq0 + MpqP.

In general, if h(x,y) = f(x,y) + g(x,y),then

Mpq
h = Mpq

f + Mpqg

This property can make moments useful in combining the disconnected

regions of a shape when noise causes segmentation errors. Also, if there

were sufficient storage, a two dimensional shape could have its components

stored separately. Then this method could be used for partial shape

recognition by combining the moments of the components until a good

match is made.

6.3 Other Moments Sets

The theory of orthogonal polynomials provides a host of complete sets of

basis functions. In general, however, they do not have all the simple

relationships for all the transformations mentioned early. Others [TEAG80,

REEV81a, HU621 have used these alternate characterizations to exploit some

particular property. Some of these alternatives are now introduced.

1) Legendre moments: The Legendre polynomials are a complete orthogonal

basis set on the interval [-1, 11. The nth order Legendre polynomial is

P n(x) = n C(i Xk (2n - 2k)!
j=0 k=o 2 k(n- k)!(n - 2k)!

The Legendre moment of order m + n is
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\mn - (2m + I)(2n + 1) f Pm(x) Pn(y) f(x,y) dx dy4 0000

The function f(x,y) can be approximated by a continuous function which

is a truncated series

NfAx,y) -: E XN-m, m Pn-m(X) Pmn(Y) •

m=0

2) Zernike moments: The Zernike polynomials, V'n(x,y), are complex valued

functions orthogonal on the unit circle x2 + y2 = 1. They are defined as

Vnf(x,y) -= Rnt(r ) ei ,

where n is the order, n>9 0 and n-V is even. The real valued polynomial

R.g(r) is defined as

n-I

S(r) = (n-s)! rn 2s

! ( 2 - s)!( 2

The Zernike moments, Ant, of order n is defined as

ff 00

Ant _ n+ f f V.i(r,0)1. g(r,)rdrd9,

where

g(r,0) = f(r cos0, r sinO)

A rotation of the object by an angle a, implies

An= A,# edo

A translation of the object however is difficult.
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The Zernike moments are related to the central moments. The radial

polynomials have the form
n

Rnt(r) E Bnk rk.
k=1

Then the Zernike moments are

-n+1 n~~G . J~
7r k=?j=Omn=O

X Pk-2j+m,2j+f-m

where q = (k -9 )/2.

If P (x,y) is the reflection of f(x,y) about a line through the origin at an

angle of 0 with respect to the y-axis then

(Ant Y= (A) e-  .

3) Rotational moment.: The rotational moments IREEV81al are complex

valued and defined as

V 0

Fnt = f fr eveg(r,O)rdrdO,
-i 0

where n is the order and n>f >0 and n-P is even,

g(r,9) = f(rcosO, rsinO), for r = x2 -+y2 and 0 = tan-l(Y)
x

The rotational moments can be obtained from the conventional moments

by

4 '7,
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21 I 2

j=Ok =0 I j lkl k2f+J

For the special case of P = n, then

(-w . n

Fnn = Y ( )Mj, n-j
j=o j

So, the nth order rotational moment is a linear combination of the

conventional moments of order less than and equal to n. If the image is

rotated by an angle 0, then

F' n Fn# e

If the image is reflected, then

F# nf= F*nq e
if

-

If the function has N-fold symmetry, then

Fnf = NF e N - o,, m iO, 1,"',k- .

So,

•2*"

Fnn = Fnn N

i2w n
Fbn'l-e N1 =' , m =0,1, ...,k-1

I (V
'

: ...k., .l..,., . • , , , " - • ,A.
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-Fnn =0, for nmodN90.

This provides a way to detect symmetry. Because of noise, the higher

order moments become less reliable. Therefore, a test on the magnitude of

Fnn should have a threshold increasing with n.

6.4 Normalization

In order to perform shape recognition it is often necessary to normalize the

shape for translation, scale, and rotation. Translation normalization is

accomplished by computing the central moments, i.e.

Ppq = [PI JJ(M1)p- -Ol- ~
r~os=o r s1

Scale normalization is performed such that p00' = 1. Thus,

ppqt = (pOO-)p+q+2 Opq .

Rotation normalization is much more difficult. Many investigators have

resorted to the theory of algebraic invariants [HU62, DUDA77J. This theory

provides measures calculated from polynomials of the central moments that are

invariant under linear transformations such as a rotation.

A popular alternative is to determine the principle axis of the image.

Then rotate the shape by transforming its moments, to place the principle axis

along the x-axis [HU62,REEV81a,REEV81bJ.

Normalize for rotation by the angle a, where

I' II
tan(2a) = 2

PT20 at P02

This angle ct to rotate the object however is ambiguous. An additional 180"
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rotation will also place the principle axis along the x-axis. It therefore is

necessary to add the constraints that j220 ># 02 and P30>0, where #pq are the

rotated moments. Shapes with N-fold symmetry however have N principle

axes.

For the experiments carried out in this report, the rotation normalization

is carried out with the help of the rotational moments, Fan. The moments are

normalized for translation and scale. Then the rotational moments up to the

5 1h order are calculated. The phase of the nth order moment ( 2<n<5) having

the largest magnitude is used for rotation normalization. The moments are

rotated so the phase of the rotated nth order rotational moment is zero, i.e. the

rotation angle is a = -LFnn/n . Then the rotational moments are calculated

again. There are still n-I rotations of !Irk, k = 1, "",n-1, that would
n

allow the nth order rotational moment to have zero phase. To choose among

these possible rotations, the following criterion is maximized for the rotational

moments of the rotated moments:

E ReFtnn)}
n=2

This essentially chooses the normalization that gives the highest degree of

symmetry about the principle axis.

As with the other shape analysis methods, an additional feature vector is

provided for the unknown shape if the magnitude of the next largest rotational

moment is greater than 05% of the largest. This rotational moment is used for

normalization in the same way as mentioned above.
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6.5 Calculation

The images generated for the experiments are discrete, so

N N
f(x,y) = E - f(x , yj) 6(x-x , y-yi). Therefore, the double integral becomes

i=Ij=1

N NM pq =- E E-xiPyiq f(xi, Yi).

i=lj=!

A discrete version of Green's theorem has been derived ITANG821 that makes

it possible to compute the moments from the chain coded boundary instead of

the discrete image.

K-i
Mpq = E Fx(xi,yi) Dy(ai-1 , a,) + xiPyiq Cy(ai_ 1, ai) ,

i=1

where the (xi, yi) are the sequential boundary points (positive integers),

xi
Fx(xi, yi) =" y q  iP, and ai is the direction chain code. Table 6.1 and Table 6.2

i=1

enumerate Dy and Cy. The computation of the moments can be speeded up
xi

considerably by having a table of functions for E iP. For example,
i=0

n n2(n + 1)2
i=O 4

6.6 Reconstruction

It is often important to be able to reconstruct an approximation to the

original intensity function f(x, y) from the moments set. If f(x, y) is of the class

of functions already stated, then its Fourier transform exists
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Table 6.1 Table of the function Dy(ai _ 1, aj).

ai  0 112 3 4 5 6 7

0 0 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0 0
2 0 1 1 1 1 0 0 0
3 0 1 1 1 1 0 0 0
4 -1 0 0 0 0 -1 -1 -1
5 -1 0 0 0 0 -1 -1 -1
6 -1 0 0 0 0 -1 -1 -1
7 -1 0 0 0 0 -1 -1 -1

' ' . " ',. .V
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Table 6.2 Table of the function Cy(ai_ 1, a1).

ai  0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 1 1 0
3 0 0 0 0 0 1 1 1
4 1 0 0 0 0 1 1 1
5 1 1 0 0 0 1 1 1
6 1 1 1 0 0 1 1 1

71 I 1 1 0 1 1 1
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F(u,v) = f f e
- i2 (ux +vY)f(x,y)dxdy

Since, f(x,y) is at worst piecewise continuous and of bounded support, then

F(u, v) can be expanded into a power series

F(u,v) = E - i2- j+k

j=0k=0 j! k! MJku i vk

where Mik is the (j, k)th moment of f(x,y). If the inverse Fourier transform is

attempted, then

00y 0 C f(-i2 r)Ik M k ujvk ei2 (ux + vy)dx dy •

f(xy" ) f f E Ik
-oo-c j=Ok=O J.

Since the limits of integration and summation are infinite, they cannot be

interchanged. So, some other alternative must be explored.

The theory of infinite dimensional normed linear spaces provides the

necessary tools. A theorem states that the closest fit to the function on the

subspace formed by a finite set of the basis functions is the orthogonal

projection onto that subspace. Then the approximation g(x, y) to f(x, y) is just

the sum of the reciprocal basis functions for that subspace weighted by the

coefficients obtained in the projection, i.e.

f(x,y) g(x,y) - aiOi(x,y),
ijEN

where

00 M

0 i = f f f(x,y) i(x,y)dxdy
-00-00

and 8i are such that
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-f f 0(x,y)Ok(X,y)dxdy = 6iki -00-00

The reciprocal basis for the monornials {xPy q} is very complicated. To avoid

computing the reciprocal basis, the moment set for the monomials are

converted to Legendre moments, X.m, where

X (2 m + l)( 2m + 1) nCmj Ck Mk,

4 i=0 k=0

where Cmi are the Legendre coefficients. That is, the Legendre polynomials are
m

Pmtx) = r, Cmjx i , xE[-1, l1
j=0

Since the Legendre polynomials are orthogonal, they are their own reciprocal

basis (except for a multiplicative normalization constant.) So,

N n
Ax, Y) t- g(x, Y) = E E Xn-m, m Pn-.(x) Pm(y),

n=0m=0

where g(x, y) can also be written as

N n
g(x,y) = E E gn Xn-my m

n=0m=0

So, g(x, y) is a polynomial whose moments up to order N match those of f(x, y).

Therefore, care must be taken to make sure that the moments are for an object

which is contained in such a region. If not, the moments must be suitably

scaled.

Another reconstruction method is based on the discrete nature of the

(NxN) images and their transformed moments [ROSE76}. Since,

I
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N-I N-i
Mpq = E iPyjq f(x, yj)

i=0 j=0

a matrix iMpq] can be written as

fMpq] = [P(p, i)] [f(i, j)] [Q(j, q)],

where

I, if f(xi,yj) = 1,t(i,j) =0
0, if f(x , yj) = 0

P(p, ,i) = xiP and Q(j, q) = yjq

The transform can be inverted so that

If(iJ)IN.N = (P-i, P)INxn [Mpqlnxn [Q-I(q, J)lnXN

whereh

[P-(i, p)] = [P(p, i)]-' and [Q-I(q, j)] IQ(j, q)-.'

The reconstruction is performed over the region [-A,A]x[-A,A. So,

=2A _2A.

xi = 1N i and Yi = -- i, i = -N/2, " • ,N/2. It is important to chose A so

that the image described by the moments is contained in the region of

definition. Figure 6.1 shows the original silhouette for the letter 'E'. Figure

6.2 shows the reconstruction of the letter 'E' from its moments up to 1 5 th order

using this discrete inverse method.
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mIlk

Figure 6.1 Letter 'E' silhouette.
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Figure 6.2 The letter 'E' reconstructed from the 15 1h order moments using
the discrete inverse method.

...... .....
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6.7 Generle Shapes

The following are the exact formulae for the moments of an ellipse (circle)

and a rectangle (square).

1) Rectangle: For a rectangle of length 'a' and height 'b' centered at the

origin

[ 11 + (-I)Pl 11 + -I)q] aP+ibq+l
Mpq (p + 1)(q + 1 ) 2 P+q+2

aP+l bq+!I
----- I _+I+q ,p and q even

(p + )(q + 1)2P

=1 0, p or q odd

The rectangle is symmetric about both the x and y axes, so notice that

Mpq = 0 for p and q odd.

There is no need to normalize for translation since M01 = M = 0. After

normalizing for scale

(A) 2

I (p + 1)(q + 1)2P + q pandqeven

0, p or q odd

For the special case of a square having side of length 'a',

1

(p + 1)(q + 1)2P + q ' p and q even
Mpq'

0, p or q odd

The rotational moments, Fnn, for a rectangle for n=1 to 5 are
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F _=MOW =I F1 =0,

-12 (b2  82

F 22b= ) F33 =O,

80 &2  b2

If a>b then F 22 <0. So, the normalization procedure will rotate the rectangle

7r so the major axis is along the y axis.2'

2) Ellipse: For an ellipse with major axis of length 2a and minor axis of 2b

(a>b) centered at the origin, the moments are

Mq = 11 + (-l)P]11 + (-1)q] ap+Ibq+I B( .- ± p+- +
Pq 2(p+ q +2) 2 '2

where B(m, n) = r(m) irn) [GRAD8SI. Again the ellipse is already

r(m + n)

normalized for translation. Now to normalize for scale,

x = I/VK F = I/v4r. So,

1pq 1 + (-I)pl 11 + (-1) q9 ( 2a2 B(1+ )

M = +2 b 2 ' 2

2(p +q+2) r 2

In the special case where a = b, we have a circle whose moments are

Mpq' 1 "+ (-I)p 11 + +-Iq) B( '+l p+l)

p+p+2 2 2
2(p + q+2) Ir 2
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6.8 Experimental Results

The feature vector for the experiments was formed by dropping the (0,0),

(0,1), and (1,0) moments since they are identical for every normalized moment

set. The remaining moments up to the nth order were then listed from the

lowest to highest as follows:

f = (A20, A11, A02 , 3fi 21, " 0 T

For most of the experiments this full feature vector of 9 th order moments is

used to 12 real numbers using the principle components transformation.

The image resolution experiment was performed. The results are provided

in Table 6.3 and Table 6.4. The performance is low, but follows the same

trend as the other methods discused previously.

The feature vector experiments results are listed in Table 6.5. The

unusual fact to note here is that the performance degrades with an increasing

number of features. In an attempt to provide insight into this phenomenon, an

additional experiment was carried out. It was observed that the high order

moments were on the order of 104 times smaller than the low order moments.

So, an identical experiment was performed except the moments were converted

to Legendre moments before being reduced or classified. The Legender

moments appear to have values in a smaller dynamic range. The results of this

experiment, however, were nearly identical to the original experiment. An

another experiment was performed where the eigenvectors used in the principle

components transformation were normalized by dividing by the eigenvalue

corresponding to that eigenvector. The results for this experiment were even

worse than with no eigenvalue normalization.

I

Vt.
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Table 6.3 MOM image resolution experimental results: classification
accuracy (%).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 28.67 21.67 19.67 16.33 16.0 16.33
32 25.0 37.0 25.0 24.0 25.0 24.0
64 18.33 31.33 36.67 33.67 29.33 28.0

128 19.0 29.0 38.33 40.67 37.67 34.0
256 18.33 25.67 31.33 40.0 39.67 38.33
512 19.0 22.0 31.67 38.0 40.67 40.33
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Table 6.4 MOM image resolution experimental results: median angle errorAOXAOY ( a ).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 39,17 67,24 67,20 68,21 70,21 70,21
32 45,22 47,15 68,17 68,24 63,24 65,24
64 45,28 35,15 40,16 57,17 58,20 59,23

128 34,37 41,28 30,16 32,15 45,17 45,17
256 40,29 32,18 32,15 32,13 28,15 32,16
512 45,37 41,19 41,16 49,15 32,16 28,15

.- •
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Table 6.5 MOM feature vector experimental results.

Order of Number of Classification Median Angle
Moments reduced Accuracy Error

Features (%) A- ,A , (0)

3 7 37.67 26,16
7 33 40.0 32,15
0 52 39.33 39,16

14 117 37.33 39,15
7 12 37.0 41,16
9 12 37.67 45,17

14 12 31.67 41,17

Ng
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The imaging experiment was also carried out. The results are presented in

Table 6.6. The performance improves with signal-to-noise ratio. There is a

slight threshold effect between 3 and 6 dB for the 64x64 image resolution

unknowns. However, the performance increases only slightly over the entire

range of signal-to-noise ratios. -.

Table 6.7 lists the results obtained when the library sampling experiment

was performed. Again, the performance improves with increasing library

density, but the increase is minimal.

Finally, the partial shape experiment was carried out with its results listed

in Table 6.8. The performance of the moments is low to begin with, but it

degrades slowly with increasing amounts of the contour being chopped.

6.9 Conclusions

The performance of the moments of the silhouette is unexpectedly very

poor. The fact that the moments are used to attempt an approximation to a

discontinuous silhouette may explain the decrease in performance with even

higher order moments ( a Gibb's phenomenon.) But is seems more likely that

crucial information is lost when the raw or conventional moments are

computed using the monomials, xPy q, with p and q large. That is, maybe the

problem is with the numerical precision of the calculations. It is possible that a

nonlinear combination of the moments such as moments invariants would

provide the transformation necessary to further extract the shape information.

This seems unlikely, however. A great deal of insight might be obtained by

improving the reconstruction methods. It is also hard to explain why the

results for these particular shape experiments are so much lower than those

quoted in the literature.

4
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Table 6.6 MOM imaging noise experimental results.

Library Unknown SNR Classification Median Angle
Resolution Resolution (dB) Accuracy Error

70(%) ____ _(0)

256 64 3 20.0 68,24
6 26.67 49,21

10 29.33 50,21
20 31.33 57,21

_00 29.33 58,20
256 128 3 32.67 45,23

6 33.67 41,17
10 35.33 41,15
20 37.67 45,17
_ o37.67 45,17

00
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Table 6.7 MOM library sampling experimental results.

Library Library Unknown Classification Median Angle
Views Resolution Resolution Accuracy Error__ _ _ _ _ _(%) .__,__(__

143 256 64 29.33 58,20
48 23.67 46,21
9 26.33 45,21

143 256 128 37.67 45,17
49 32.33 26,15
9 27.33 32,17

143 256 256 39.67 28,15
4g 35.33 26,15
9 27.0 40,18

| ' I
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Table 6.8 MOM partial shape experimental results.

Percent Classification Median Angle
Contour Accuracy Error
Chopped M% AO (0)

0 37.67 45,17
10 36.33 57,20
20 25.33 53,24
30 25.67 67,25

40 21.0 62,27

50 1 5.3346,4
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CHAPTER 7

MOMENTS OF THE BOUNDARY CURVE

7.1 Introduction

If a region in the plane is simply connected and its boundary is smooth,

then this silhouette is completely specified by its boundary. Moments of the

boundary curve have been used [DUDA77] before for shape recognition, but

there has been a lack of a theoretical basis. Let all the "mass" of the object be

concentrated on the boundary. Let -x, y) = 0 be the equation that describes

the boundary curve. Then the moments of the boundary, BMpq, are

00 00

BM q - f f xPy q 6(7x,y)) dx dy,

-00-00

where 6(') is the generalized delta-function [GELFP4] . This is a global shape

recognition method.

7.2 Normalization

The operations needed to normalize the moments of the boundary are

exactly the same as for the moments of the silhouette with the exception of

dilation (or scale.) To find the proper relationship, the moments of the circle

boundary will be used.

The equation for a circle of radius c centered at the origin is x2 + y2 =c 2,

or in polar coordinates p c. So,

I
no... .ni~ num-
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2roo
BMpq = ffpp+q+l cosPP sinqf6(p-c)dpdf

00

2x

= CP+q+ IcosP6 sin90dP
0

= 1 + (-I)P] 1I + (-1)q 13(P+ + )CP+q+lBNipq 2 2 2

Now, if the circle is scaled so it has a radius of Xc, then

21roo
DMpq = f fPp + q+ I cosPesinqe 6(p- Xc) dp dO

00

2w
- Xp+q+lCp+q+l fcosPesinqOdO.

0

This would seem to imply that

BM pq= = Xp+q+l BMpq

So, to normalize for scale changes, let X = I/BMoO. When 6('y(x, y)) is written

as 6(p-c) for a circle, we are assuming that the mass is of unit density and

uniform mass distribution. On the other hand, if 6(,Ax, y)) had been written as

6(p9- c2 ) for a circle, it would mean there is unit mass uniformly distributed.

7.8 Generic Shape@

Following are the moments of the boundary curve (MOMB) for the

rectangle (square) and a circle.
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1) Rectangle: For a rectangle centered at the origin with length 'a' and height

'b' with major axis along the x axis, the moments of the boundary curve

are

q 2P +q+l p+ 1  lpI I

For example, BM4O = 2(a + b), BM10 =- BM01  01 and

BM20- (a + 3b). After normalizing for scale, the moments are
6

BM 11r + (-)PI11 + HA)q a + b ________

pq 4P+q+1 ~ P+1 q+1 I (a +b)P +q+l

For the special case where a = b, a square,

BM pq' - jl+(-1)Plfl+(-)qi* p+q+l
8 P+q+1 (p +1)(q +1)

2) Circle: For a circle of radius c centered at the origin, the moments of the

boundary curve are

BM qI = ~p+q+l 11 + (1P + (-)q1 Bp + q+1pq 2 B(2 '2)

For example, BMOO 21rc, BMIo = NI = 0, and BM20 =Tc3. After

normalizing for scale, the moments become

BM It = 1-)P 1 +g+
pq (2w)P+q+I 2 2 2

For example, BMNI 1, BMI0' BM1 I = 0, and BM2I -

82

___________ft
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7.4 Calculation

Since the images are discrete, the moments of the boundary curve are

calculated from the (xi, yi) coordinates pairs obtained from the Freeman chain

code. So,

~ K-I
BMpq = xiPyiq.

i-0

Then the moments are normalized for translation, scale, and rotation. The

translation and rotation normalization is the same for the moments of the

silhouette. The scale normalization is carried out as described in this chapter.

7.5 Experimental Results

The feature vector for the moments of the boundary is formed in exactly

the same way as for the moments of the silhouette. The (0,0), (0,1), and (1,0)

moments are dropped and the rest listed as follows:

I = "..0B II P 2 '1B~ )

For most of the experiments, the 9th order moments were used followed by the

principle components transformation retaining 12 real numbers.

The results of the image resolution experiment are provided in Table 7.1

and Table 7.2. The performance is best when the prototype is of a resolution

approximately the same as the unknown. The 256x256 library resolution has

the highest average classification accuracy.

The results of the feature vector experiment are shown in Table 7.3. The

performance is the same for all the different feature vectors investigated. This

would imply that all the shape information (though it is not much) is contained

in the 3 rd order moments or less. It was observed that the low order moments

.i
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Table 7.1 MOMB image resolution experimental results: classification
accuracy (%).

Unknown Prototype Resolution
Resolution 16 32 64 128 256 512

16 27.33 19.0 17.0 17.67 17.67 19.0
32 25.0 25.33 21.33 23.67 20.33 19.0
64 21.0 25.33 25.0 24.0 26.0 25.67
128 17.67 26.67 26.67 26.33 28.33 29.0
256 18.33 22.33 25.0 26.33 28.0 28.33
512 18.0 19.33 24.0 26.0 29.67 27.33

..



178

Table 7.2 MOMB image resolution experimental results: median angle
error (o)

Unknown Prototype Resolution
Resolution 16 32 84 128 258 512

16 45,18 39,19 54,25 75,26 83,37 84,29
32 36,26 24,17 34,17 54,21 63,19 63,17
64 46,29 56,17 31,17 42,13 49,17 56,20

128 46,27 46,21 45,17 34,17 29,22 34,16
256 46,26 46,23 29,17 31,19 25,16 39,21
512 46,26 49,21 27,18 27,17 27,21 24,21
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Table 7.3 MOMB feature vector experimental results.

Order of Number of Classification Median Angle
Moments reduced Accuracy Error

Features (%) A , A ( 0)

3 7 28.33 29,22
5 18 28.33 29,22
7 33 28.33 29,22
9 52 28.33 29,22

10 63 28.33 29,22
5 12 28.33 29,22
7 12 28.33 29,22
9 12 28.33 29,22

10 12 28.33 29,22

4'
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were of many orders of magnitude larger than the high order moments. Since

the square of the error distance measure was used in the classification, the

differences among shapes expressed in the high order moments would be

completely dominated by the low order moments. This problem also occurred

for the moments of the silhouette, but to a somewhat lesser extent.

The imaging noise experiment was also performed. Its results are provided

in Table 7.4. As expected, the performance improves gradually with increasing

signal-to-noise ratio.

The library sampling experiment results are listed in Table 7.5. The

performance improves moderately with increasing number of library views.

Table 7.6 provides the results for the partial shape experiment. The

performance degrades very slowly as more of the contour is chopped.

7.6 Conclusions

The overall performance of this method is very poor. The dynamic range

problem indicated for the moments of the silhouette seems to be accentuated

for the moments of the boundary. Something would have to be done to

address this problem before this method would be of much use for shape

recognition.
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Table 7.4 MOMB imaging noise experimental results.

Library Unknown SNR Classification Median Angle
Resolution Resolution (dB) Accuracy Error

(%) A (0)

256 64 3 17.33 39,31
6 22.33 46,36

10 26.0 31,27
20 24.67 39,17
oo 26.0 49,17

256 128 3 15.67 47,27
6 15.67 49,32

10 22.33 47,21
20 28.33 29,22
co 28.33 29,22

'"7-7-7 . " 7 . . 7.7 .' "l.. . ... . . -n ,1
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Table 7.5 MOMB library sampling experimental results.

Library Library Unknown Classification Median Angle
Views Resolution Resolution Accuracy Error

__ __ _ _ __ _ __ %) {°( )

143 256 64 26.0 49,17
49 21.67 27,17

9 1 22.0 46,16

143 256 128 28.33 29,22
49 25.0 25,17

9 22.33 46,17
143 256 256 28.0 25,16
49 24.67 21,13

9 22.33 46,18
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Table 7.6 MOMB partial shape experimental results.

Percent Classification Median Angle
Contour Accuracy • Error
Chopped (%) A ,& (,)

0 28.33 29,22
10 28.67 23,18
20 24.67 34,26
30 24.33 63,26
40 18.33 50,33
50 22.33 59,30

A-

- 4 i
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CHAPTER 8

COMPARISON OF GLOBAL

SHAPE METHODS

8.1 Introduction

In this chapter the shape methods are compared in two ways. First, the

analytic relationships between pairs of shape methods are discussed. Then, a

comparison is made based upon the shape recognition experiments.

8.2 Analytic Comparisons

The Fourier descriptors of the boundary function and the Walsh points

are very similar. The basis functions for both methods are characterized by the

number of zero crossings in one basic interval. The Fourier component of a

particular frequency has a form very similar to the corresponding sequency

Walsh function. A basic difference, however, is that the Fourier functions are

everywhere continuous, while the Walsh functions have a finite number of

discontinuities. The discontinuous nature of the Walsh functions is what

causes them to lack a simple time (starting point) shift property such as the

Fourier functions exhibit. This difference is also what often causes the distance

measure used in analyzing approximation errors for the Fourier and Walsh

functions to be different. Often times the "sup max" norm is used for the

Walsh method and an Euclidean norm for the Fourier method.

The boundary function and cumulative angular deviant are related

through a nonlinear transformation. If 'st) is the boundary function, then its

*1-7 -
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derivative can be written as

If the contour was traced uniformly (i.e. as a function of arc length), then

I(t)I -- K- constant

So,

-y(t) = K e - (t)

The angle function, 0(l), of chapter 5 is then

Lt) = 0(-t).

0(l) was defined for the object traced clockwise. Thus,

T , te0,T].t) = K e- + EO T .

Hence,

2n 2wrt i{Ed.e T + 6
I i-j -c:e =Ke T

n T

Determining the coefficients of -1 from the coefficients of OP is similar to the

problem of finding the spectrum of a phase modulated signal from the

spectrum of the modulation signal.

Now, in discussing the relationship between the Fourier descriptors of the

boundary and the moments of the silhouette, the class of objects will be

restricted to those which are star shaped with respect to a (reference) point.

An object is star shaped with respect to a point if a line segment joint that

point and any other point in the object is completely contained in the object

[LAY82]. The (p, q)h moment of a silhouette, 0, is defined as

---------------
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Mpq f f x P yq(x, y) dxdy ,

where

11, (X,Y)EO

Writing x and y in polar coordinates

x =P coso P (e + e)
2

y psin peO -e-
ypsin~p( 2i

Expanding xP and yq

XP = ( p ( t) (p) (eio)pm, (e-)

= ()P~ P) ei(P 2,)
2 m=om

yq =1P e' 9  + e' Jq L~ = t (i)2k-q ei(q-2k) 0

Substituting into the moment equation

Mpq f f(.) 2 eiPmmj-

[A)q (i)2k-q ei(r-2k)1pO pd9

2 -pOpdd
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2k 21 co(i2-1 (p ) (q) f fpp+q+ 1 e'[p +q-2(m + k}# g(p,O)dpdO,

m=0 k=0 2 p+ q  00

where g(p,O) = f(x cosO, y sinO). Then for a fixed 0

(P, j prb(O) = u(p - rb()).

, p>rb(0)

rb(O) is the distance from the reference point to the boundary, and u(t) is the

Heaviside step function. Since, the object is star shaped, rb(P) is unique for a

fixed P. The double integral can be written as

2w co
f fpp+q+l ei[p+q-2(m+k)9 u(p - rb(O)) dpdO

0 0

2v rb(f)
-f f pp+q+I ei(P+q+ 2 )# e-i 2(m+k+l)# dO

0 0

21r
f [rb(O)]P+q+2 ei(p+q+ 2 ) ei 2(m +k+) dO.

p+q+2 0

If the object is traced so that 1(0) = rb(O) e', then the above integral becomes

2r 2w
2) . 1 f[ly)Jp +q +2 ei 2 (m+k+l) dO.(p +q+2) 2v 0

Notice that

2w

Cn= -f-,0) e-'n' dO.
2r0

If we let W-n*cli to be the ith element of the nth order convolution of the {cn}

sequence with itself, then

_ • , €'.
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M j2k-q (q (p) 2irWpq+

m=0 k=0 2 P+q k (p+q+2)2m+k+)

Notice that if the boundary is traced so that 'y(O) = rb(O) e i , then "7 is not

uniformly traced.

A more general relationship between the moments of an object 0 and the

Fourier descriptors of the boundary function -1 can be obtained using Green's

theorem. The (p, q)th moment of a simply connected object is

00 00

Mpq f fxPyqf(x,y) dxdy.
-00-00

Green's theorem states that

ff( M -M dx dy = fM dx + fN dy.
o Ox Oy

Letting

N -1 xP+lyq and 1 Pyq+l
2 p+1 2 q+1

then

ON = I xPy q  and 2M _-xPyq.

Ox 2 oy 2

So,

Mpq = ffxPyqdxdy I fxPyq+ldx
0 2(q +1) *

+ I fxP+lyq dy
+ 2(p+1)

t
4...- .. . - .. .. ._-._--_-_-
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T l q 
-.

dy xPyqd..4 .- dt-2oi(p+ 1) dt (q+l) dt

20 1 p+1 dt q+1 dtJ

Since,

x(t) and y(t) - "At) + "/*(t)
2 2i

Then

T
pq 4(p+l)(q+ I) m=0k=0 -

+ (p+q+2)(1y* - y*,) ' p+q-m-k (,,*)m +k dt

If -yt) can be written as a finite sum of Fourier components then, in principle,

this expression can be evaluated. In chapter 3, the area formula in terms of

the Fourier descriptor coefficients was derived using this expression, i.e. Area

8.3 Empirical Comparisons

In this section the global shape methods will be compared on the basis of

the evidence provided by results of the various experiments.

First, the image resolution experiment will be discussed. The diagonal of

the tables of results for the image resolution experiment are plotted together in

Figure 8.1, Figure 8.2, and Figure 8.3. This experiment sets the stage for the

rest of the combined results in that it clearly ranks the methods performances.

• !

• :,;:
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Fourier descriptors of the boundary (FDS) and Walsh points (WAL) have the

best results. Then the cumulative angular deviant Fourier descriptor method

(CAD) is next, but at a significantly lower performance. The moments of the

silhouette (MOM) and the moments of the boundary (MOMB) have the worst

performance. The performances for all the methods quickly deteriorate below

the 32x32 image resolution. Since, this occurs for all the methods, it is likely

that this is due to the particular aircraft shapes being used. The median y

angle error is usually somewhat lower than the median x angle error. This is

also probably due to the aircraft shapes themselves.

The combined results for the feature vector experiment are plotted in

Figure 8.4, Figure 8.5, and Figure 8.6. The results for this experiment are the

most difficult to explain. The behavior of the Fourier descriptors and Walsh

points are as would be expected. As the number of features increase, so does

the classification accuracy. The performance for the cumulative angular

deviant and moments of the boundary increase but then decrease. It is difficult

to explain why this occurs. The moments of the boundary on the other hand,

neither increase or decrease over the range investigated. This would indicate

that all the information available is contained in the first few moment values.

The results for the library sampling experiment are plotted in Figure 8.7,

Figure 8.8, and Figure 8.9. As the number of library views are increased the

classification results improve. Again, the Walsh points and Fourier descriptors

of the boundary are very close with the other methods following a similar trend

but with a poorer performance level.

The imaging noise experiment results are plotted in Figure 8.10, Figure

8.11, and Figure 8.12. All the methods seem to exhibit a threshold effect. The

Fourier descriptors and Walsh points effectiveness degrades markedly between

. i ,
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Figure 8.2 Combined results for the image resolution experiment: median x
angle error.
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Figure 8.4 Combined results for the feature vector experiment:
classification accuracy.
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6 and 10 dB signal-to-noise ratio. The moments methods exhibit a very soft

threshold. The cumulative angular deviant Fourier descriptors method exhibits

a very prominent threshold between 10 and 20 dB signal-to-noise ratio.

The results for the partial shape experiment are plotted in Figure 8.13,

Figure 8.14, and Figure 8.15. The Fourier descriptors and Walsh points have

similar characteristics. The performance of both of these methods decreases

rapidly once more than 10% of the contour is chopped. Since, these are all

global shape methods, this is an expected result. The moments methods,

however, degrade very slowly. Their performance is so poor to begin with, this

ability is still not very useful. The performance of the cumulative angular

deviant, on the other hand, degrades immediately from its already poor level as

the contour is chopped.

8.4 Conclusions

The Fourier descriptors of the boundary and the Walsh points are very

similar methods. Both perform excellently in comparison to the other shape

methods. The cumulative angular deviant is a close relative of the Fourier

descriptors. So its performance is closer to that of the Fourier descriptors of

the boundary. But it is still significantly worse in classification accuracy with

respect to the Fourier descriptors of the boundary.

The moments methods had a bad performance. From the results

published in the literature, this was unexpected. It is difficult to explain the

poor results, but as noted earlier, it seems that the large dynamic range in the

moments might cause this poor performance. Another possibility might be that

smooth polynomials are being asked to approximate a discontinuous binary

function.

-
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Figure 8.14 Combined results for the partial shape experiment: median x
angle error.
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CHAPTER 9

FOURIER-MELLIN TRANSFORM TECHNIQUE

FOR PARTIAL SHAPE RECOGNITION

9.1 Introduction

Often the shapes to be recognized are only partially correct. This can

come about as a result of noise, or of errors in segmenting the object, or if the

view of the object is in some way obscured. If this happens then some part of

the object's contour is either missing or distorted. Methods of complete shape

analysis do not deal with this problem. Global, complete shape analysis

methods rely on the fact that shape information distributed over the entire

shape effects each component of the characterization. So, when part of the

shape is in error, all of the features are degraded. Local, complete shape

methods, even though using local information, usually utilize some global

information to normalize the local features. Sometimes this global information

needed can be tacitly assumed. For instance, the method used by Gifford

[GIFF82] uses the distances from a group of features to normalize all the other

distance features. Partial shape analysis methods attempt to overcome this

difficulty. Partial methods extract local features invariant to scale, rotation,

etc. and then attempt to combine features when necessary to attempt a match

to the corresponding features of a prototype.

A great deal of effort has been exerted to apply syntactic pattern

recognition methods to partial shape recognition [FU821. Grammars are

,, w u.H -~u -.-
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developed to implement rules for the shape allowing for missing parts.

However, it becomes very difficult to generate such rules when there are a large

number of objects and possibly .many views of each object. Algorithms for

automatic generation of the necessary rules from test data have not been

developed. As an alternative, methods that try to dynamically "warp" the

features to provide a match to the library shape have been developed

[WALL81,GIFF82. These methods have had some success, but the need to

test many possible combinations of features causes them to be very time

consuming. Also, there are a number of thresholds and others parameters that

must be determined a priori.

The method of partial shape recognition presented here attempts to

overcome these difficulties by using transform methods [GROG83. The

essential character of the method is that it uses global information to

determine how the features are to be aligned. Then a local comparison to

determine the degree of match is performed. This global information is

obtained by the use of a shift and scale invariant Fourier-Mellin correlation.

9.2 Curvature Function

Because of the physiological and psychological evidence, most partial

shape methods use the curvature or the angles associated with the boundary of

an object. If the boundary function, -Kt) = x(t) + iy(t), is twice differentiable

and - (t) 0 0, t E [0, L], then the curvature function, oc(t), is

OC(t) = -tan-i f t'
at (t)

where i(t) and i(t) are the derivatives of x and y with respect to t. Since the

boundary functions for discrete images are polygons, a discrete approximation
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of the curvature [BENN75I is

i = tan-I Yi - Yi-I tan_1 Y i- I - Y ,-2 i 0, •,K-1
xi - yi-I xi-I - Xi-2

The discrete nature of the image and the use of the Freeman chain code causes

the curvature to be quantized. Filtering is used to smooth the curvature

function.

The curvature uniquely specifies a curve independent of translation and

rotation. The scale of the shape is normalized by scaling the period of the

curvature function. So, the curvature function sequence is resampled to a fixed

number of points. For a simple closed curve, the integral of the curvature over

a period is ±2 7r (360"). So, the resampling is performed in such a way to

preserve the total curvature.

If the shape was complete then only a starting point normalization would

be necessary to compare an unknown curvature function to a prototype.

However, when the contour is only partially correct, then the contour length of

corresponding curvature features is also likely to be different. So, a scaling and

shift of the time axis of the curvature needs to be determined. The Mellin

transform has a time scale property [ALTE78,BAUD73,ROBB72] that is useful

in determining the rescaling of the time axis of the unknown to match the

prototype.

Ik

,,-..
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9.3 Mellin Transform

The Mellin transform has been used before to perform scale invariant

correlation ICASA76a,CASA76b,CASA77,CASA78. The Mellin transform is

defined as

00

MF(S) = fF(x)x' - I dx
0

Evaluating the transform along the imaginary axis,

Co

00
MF(-iu) = JF'x) x 'dx.

The Mellin has the following time scale property. If G(x)= F(ax), then

MG(-iu) = MF(-iu) a iu = MF(-iu) e-iuIn& Thus, IMG(-iu)I = IMF(-iu)[. A

scaling of the independent variable introduces a simple linear phase shift in the

transform domain.

Since the curvature functions for the boundaries are discrete, a discrete

Mellin transform is desired. The Mellin transform is related to the Fourier

transform. If x = T et, then the Mellin transform becomes

00

MF(-iu) = T-iu f F(Tet)e-iUtdt
-00

M(F(x)} - T-iu T(FTet)} .

For a discrete signal, once the exponential sampling has been completed, then

the Fast Fourier transform (FFT) is used to compute the Fourier transform.

There are some difficulties when the sequence is exponentially sampled.

Resampling of the function near the origin creates problems. Also, it is not

clear what kind of resampling should be done. To ciicumvent these problems a

-4.
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direct calculation of the Mellin transform has been developed IZWIC83]. The

discrete signal is assumed to be constant over each sample interval and the first

sample in the sequence is zero. The Direct Mellin Transform (DMT) is

K-1 Ak iuj *n k
MF(-iui) = -iuj e

k=OIU

where

Ak =F(Xk)-F(Xk+1) and uj = r I, i 1,2, -N-
N

9.4 Fourler-Mellin Technique

In order to match an unknown curvature function for a partial shape to a

prototype, it is first necessary to eliminate the effects of the unknown starting

point shift. This is accomplished by taking the magnitude of the Fourier

transform. The Fourier transform has a time shift property analogous to the

scale property of the Mellin transform. If g(t) = f(t-t 0 ) and a>O, then

r{g(t)} = e-1 to r {f(t)}. So, T{g(t)}j = {f(t)). Taking the magnitude

of the Fourier transform to obtain time shift invariance may cause some

problems. The loss of information in the phase may cause ambiguity that will

place a number of curvature functions into the samle class [WALT63]. For

instance, a signal and its Hilbert transform have the same Fourier transform

magnitude.

The Mellin transform is used to obtain a scale estimate. Let

g(t) = f(at-tl),(a>O). Then

10

'J' .... - "' r ,... .... , u, - .. . -- . . mk - " "
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13

r ({g(t)}I = IaF(a)I ,

where F(w) ( T~f(t)). Let

F+(w) {F(ow), w>O0, G +(w)-{i 9{t))[ IIW >o,
0, W<O 0, W<0"

Now, taking the Mellin transform

MG(_iu) = I a" MF(-iu), wherea

MF(-iu) = M{F+(w)} MG(-iu) - M{G+(w)}.

So, the Fourier transform of MF X MG* is a cross correlation whose peak is

shifted from the origin by In (a), i.e.

{M F X MG* ) = CFF(" - In a) ,

where

CFF(r) = T{MF X MF*}

Once this scale is determined, the unknown is resampled. The peak of a

circular correlation of the prototype curvature sequence and the resampled

unknown curvature sequence gives the shift necessary to align the two

curvature functions. Now a local comparison can be made. The local

comparison used in this report is simply the pointwise difference between the

two curvature functions weighted by 1/cosh(kiP), where Rip is a smoothed

version of the prototype curvature function, i.e.

54t
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iU -P

cosh(icp)

The weighting function was used to make it easier for a match to be made even

when a curvature peak is slightly misaligned. The weighted difference sequence

is then thresholded to determine the segments of the shape that match the

prototype, i.e.

di' > t, then the ith segment doesn't match.

di' < t , then the ith segment matches.

An overall measure of the degree that the unknown matches the prototype,

similar to the distance used by Gifford [GIFF821, is defined as

d = d' + di( 1 1)f fy

where

d' die

iEM

and M = set of indices, i, where xjU matches icP and f = the fraction of the

total number of points that match. It is this distance measure that is used to

classify the unknown shapes in the experiments described later.

9.5 Experimental Results

First, the steps of the algorithm will be followed for a single unknown

shape. Figure 9.1 depicts a F104 prototype contour and an unknown contour.

This is the prototype with 10% of the original contour deleted. Also notice

that the starting point has been changed. The deleted contour segment is

-.

Aa A--
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Figure g.1 Complete F104 contour prototype (top) and 10% chopped
unknown (bottom) contours.
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replaced with a right angle segment which, in this case, is longer than the

original piece of contour it replaces. Figure 9.2 is the curvature function for

the prototype contour before filtering. A 30 point rectangular filter is then

applied. The resulting sequence is shown in Figure 9.3. This sequence is then

resampled from 624 samples to 256 samples. (See Figure 9.4.) The unknown

curvature function is also computed, smoothed, and resampled to 256 samples.

It is shown in Figure 9.5.

For comparative purposes, the unknown and prototype are correlated.

(See Figure 9.6.) Then the unknown is shifted by the amount corresponding to

the peak in the correlation. From Figure 9.7 it is easy to see the effect the

scale difference might have on the matching process. The simple difference

function for this shift of the unknown curvature and the prototype is shown in

Figure 9.8. This difference is large even over segments where the two shapes

should correspond. This illustrates the necessity of determining the proper

time scale.

Now the FFT is used to compute Fourier transforms. Then DC

component is set to zero and the magnitude computed. The Fourier transform

magnitudes are shown in Figure 9.9 and Figure 9.10. The Mellin transform is

computed using the direct method (DMT). The magnitude of the Mellin

transform for both the unknown and prototype Fourier magnitudes are shown

together in Figure 9.11. It is clear that the Mellin transform magnitudes of the

two Fourier magnitudes are very similar. Now the Mellin transforms are

multiplied. The cross correlation is obtained by taking a DFT of the resulting

sequence. The magnitude of this cross correlation is shown in Figure 9.12.

Notice that the peak has shifted from the origin corresponling to the logarithm

of the scale change. This scale is used to resample the unknown. The scaled
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Figure g.g Magnitude of the FFT for the prototype curvature function. I
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Figure 9.10 Magnitude of the FFT for the unknown curvature function.
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Figure 0.11 Mellin transform (DMT) magnitude of the FFT magnitude,
prototype (solid) and unknown (dotted).
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80% 10%

Figure 2.18 Side view of F104 chopped 0,10, 20, 30, 40, 50, 60, 70, 80, and

go%. 0.
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V 0% 10%

20% 30%

40% 50%

60% 70%

80% 90%

Figure g.1g Contours reconstructed from filtered & resampled curvature
functions (0 - Q0 % chopped).
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a~. matching

... non-matching

Figure 9.20 Segmented reconstructed contour, 10% chopped.

~-..E/ ______matching

S..... non-matching

Figure 9.21 Segmented reconstructed contour, 20% chopped.
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Figure 9.22 Segmented reconstructed contour, 30% chopped.
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Figure 9.23 Segmented reconstructed contour, 40% chopped.
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Figure 9.24 Segmented reconstructed contour, 50% chopped.

.......... ..

°I • I

E/ ___matching

.... non-matching

Figure 9.25 Segmented reconstructed contour, 60% chopped.

'0'



239

.......

* ______matching

Figure 9.26 Segmented reconstructed contour, 70% chopped.

(..E ______matching
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Figure 9.27 Segmented reconstructed contour, 80% chopped.
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Figure 9.28 Segmented reconstructed contour, 90% chopped.
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Figure g.29 Overhead view of six aircraft.
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Figure 9.30 MuG overhead view chopped 0% to 90%.
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Figure 9.31 B57 overhead view chopped 0% to 90%.
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Figure 9.32 Phantom overhead view chopped 0% to 90%.
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Figure 9.33 F104 overhead view chopped 0% to 90%.
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S 40% 50%

1 60% 70%

~ 80%90%

Figure 9.34 F105 overhead view chopped 0% to 90%.
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Figure 9.35 Mirage overhead view chopped 0% to 90%.
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Table 9.1 Fourier-Mellin partial shape method classification results for
overhead views.

Percent Number Correctly
Chopped Classified (out of six)

0 6
10 6
20 5
30 4
40 5
50 6
60 2
70 1
80 2
90 2

i .
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9.6 Conclusions

This transform method attempts to overcome the many problems

previously encountered in performing partial shape recognition. A large

classification experiment would be needed to verify its capabilities. The

method appears to perform well with up to 50% of the contour chopped.

There are several important questions concerning the use of this method that

have yet to be addressed. Some of these are a) How many Fourier and Mellin

components are necessary to still obtain adequate results? b) What are the

computation and storage tradeoffs with respect to the other methods available?

c) What information is lost in taking the modulus of the Fourier transform of

the curvature function? d) What type of error norm should be used to

determine a match? Once the scale and starting point alignment has taken

place using the Fourier-Mellin transform technique, then some of the other

matching techniques, such as dynamic time warping, might be used to improve

the classification results. The introduction of this method provides the

possibility of using transform methods to partial shape recognition.

I..

-
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

The global shape methods using functional approximation have been

investigated in several ways. The accumulation of the various properties

related to the geometry of a shape have helped to indicate how the methods

construct a characterization of the shape. The set of shape recognition

experiments provided empirical results useful in determining the effectiveness of

the various shape methods in performing shape recognition.

The Fourier descriptors of the boundary performed better than any of the

other four methods. Walsh points of the boundary performed almost as well

and can be computed quickly. The Walsh points, however, do not have the

nice properties of the Fourier descriptors of the boundary. The performance of

the Fourier descriptors of the cumulative angular deviant was significantly

below that of the Fourier descriptors of the boundary. The performances of

the two moment methods were rather poor, far below that of the other three

methods just mentioned. There is a numerical precision or dynamic range

problem in using the moments methods that has yet to be overcome.

Obtaining the moments of the silhouette is really a two-dimensional transform.

Much of the information contained in the moment set is necessary to

approximate the binary nature of the silhouette rather than extracting the

shape characteristics. The moments, however, can be used when there is more

than one connected component to consider as a single shape.
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Another important issue is the representation problem for a three-

dimensional rigid body. The questions of how many and which views are

adequate to represent the shape have yet to be answered. Some empirical data

for some complex objects (aircraft) has been presented by Charpentier and

Glenn [CHAR81,GLEN82. In general, the theory necessary to solve these

problems is not available. However, it has been determined that two non-

parallel views are adequate to represent a quadric surface [GROS83. A related

problem is the following: How* many different directions are necessary to

illuminate the entire boundary of a convex body with a bundle of (parallel)

rays? It has been asserted that 8 or less different views are needed to

illuminate the surface of a three-dimensional convex body [BOLT80]. This

illumination of the surface is similar to the operation of producing a two-

dimensional range image of a three-dimensional convex object. It is also known

that the intersection of the back projections of the simply connected silhouettes

forms a convex hull for the object.

Another possible way to formulate this problem is with the use of the

Radon transform 1CELF66]. Let 16 (x',y') be the Radon transform of the

three-dimensional rigid body, 0, with a constant density, p, for the parallel

bundle of rays with a direction (0,0). The silhouette is then the thresholded

image,

IOO' (x' ,y') = g(I, x' ,y' ))

where g(t) = 1, if t>O and g(t) = 0, if t<O. This thresholded image is then

used to reconstrnit the object. If the thresholding had not taken place, this

would be ordinary reconstruction from projections. So, the question becomes

this: Under what conditions can the function f(x,y,z) be approximated to an

U t • ., .
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acceptable degree of accuracy when reconotructed from a limited number of

thresholded views given the additional constraints that the object is of bounded

support and is of constant density?

The representation problem is important for practical reasons, since

having the smallest possible number of library views would reduce the storage

requirements and also reduce the time necessary to determine a match.

The Fourier-Mellin technique introduced has the potential of solving some

of the problems that make it difficult to recognize partial shapes. This method

was shown to be capable of recognizing shapes with up to 50% of the contour

in error. A larger partial shape recognition experiment would help verify the

method's usefulness. The technique of time shift and scale invariant

correlation should have applications in many areas where part of a signal is

seriously degraded but a match to a prototypical signal is desired. More

research is also needed to determine the best segmentation procedure and

distance function for the matching process. More investigations are also needed

to determine how many Fourier and Mellin components are actually necessary

to obtain an adequate level of performance.

s-...-

. .. ~.
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